
This document is issued within the frame and for the purpose of the GreenMov project. This project has received funding from the

European Union’s Innovation and Networks Executive Agency – Connecting Europe Facility (CEF) under Grant AGREEMENT No

INEA/CEF/ICT/A2020/2373380 Action No: 2020-EU-IA-0281. The opinions expressed and arguments employed herein do not

necessarily reflect the official views of the European Commission.

This document and its content are the property of the GreenMov Consortium. All rights relevant to this document are determined by the applicable laws.

Access to this document does not grant any right or license on the document or its contents. This document or its contents are not to be used or treated in

any manner inconsistent with the rights or interests of the GreenMov Consortium or the Partners detriment and are not to be disclosed externally without

prior written consent from the GreenMov Partners.

Each GreenMov Partner may use this document in conformity with the GreenMov Consortium Grant Agreement provisions

(*) Dissemination level.-PU: Public, fully open, e.g. web; CO: Confidential, restricted under conditions set out in Model Grant Agreement; CI: Classified,

Int = Internal Working Document, information as referred to in Commission Decision 2001/844/EC.

Green mobility data models and services for smart

ecosystems

D4.3 Source Selection Building Block

Document Identification

Contractual Delivery Date 28/02/2023

Actual Delivery Date 28/02/2023

Responsible Beneficiary IMEC

Contributing Beneficiaries ATOS, FIWARE

Dissemination Level PU

Version 1.0

Total Number of Pages: 22

Keywords

Sustainable Mobility, Context Broker, Linked Data, Source Selection, Linked Data.

Document name: D4.3 Source Selection Building Block Page: 2 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Document Information

List of Contributors

Name Partner

Julian Rojas IMEC

Brecht Van de Vyvere IMEC

Filip Gosselé IMEC

Rémi Ollivier ATOS

Alberto Abella FIWARE

Document History

Version Date Change editors Changes

0.1 12/01/2023 Filip Gosselé Starting ToC

0.12 14/02/2023 Rémi Ollivier Add section 2.1 on Context Brokers

0.13 16/02/2023 Filip Gosselé. Minor changes.

0.14 21/02/2023 Rémi Olivier/Filip

Gosselé

Graphs updated/conclusion added.

0.2 23/02 Filip Gosselé Content ready for review.

0.3 27/02 Rémi Ollivier Add context broker schemas as recommended by

reviewer.

0.4 28/02 Filip Gosselé Formatting

Related Activity Activity 4 Document Reference D4.3

Related Deliverable(s) D4.2 Dissemination Level (*) PU

Document name: D4.3 Source Selection Building Block Page: 3 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Document History

Version Date Change editors Changes

0.9 28/02/2023 María Guadalupe

Rodríguez

Quality Review Form

1.0 28/02/2023 Carmen Perea FINAL VERSION TO BE SUBMITTED

Quality Control

Role Who (Partner short name) Approval Date

Reviewer Nuria Bernabé, Eduardo Ilueca (HOPU) 24/02/2023

Quality manager María Guadalupe Rodríguez (ATOS) 28/02/2023

Project Coordinator Carmen Perea (ATOS) 28/02/2023

Document name: D4.3 Source Selection Building Block Page: 4 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document Information .. 2

Table of Contents .. 4

List of Figures ... 5

List of Acronyms ... 6

Executive Summary ... 7

1 Introduction .. 8

1.1 Purpose of the document .. 8

1.2 Relation to other project work .. 8

1.3 Structure of the document .. 8

2 Basic software components .. 9

2.1 Context broker .. 9

2.1.1 Introduction to NGSI-LD .. 9

2.1.2 Testing and performance ... 9

2.1.3 Conclusion .. 16

2.2 NGSI LDES ... 16

2.3 Coverage index. ... 17

2.4 Source selection building block ... 17

2.5 Connection with open data portals ... 19

3 Conclusions .. 20

4 References .. 21

Document name: D4.3 Source Selection Building Block Page: 5 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1: Evolution of update rate according to the number of entities. ____________________________ 10

Figure 2: Evolution of query rate for all entities according to the number of entities __________________ 11

Figure 3: Evolution of queries rate for one entity according to the number of entities _________________ 11

Figure 4: Evolution of queries rate according to the number of updates ____________________________ 12

Figure 5: Evolution of query rate according to the number of updates with a bigger Kubernetes cluster. __ 12

Figure 6: Orion-LD architecture __ 13

Figure 7: Scorpio Architecture __ 14

Figure 8: Stellio architecture ___ 15

Figure 9: Drawing 1- Example of SPARQL query to select datasets that contain entities of type ResourceReport

and have a location property. ___ 18

Figure 10 Source selection demonstrator where relevant sources can be retrieved based on the type of entity

and properties ___ 18

Document name: D4.3 Source Selection Building Block Page: 6 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation / acronym Description

CR Context Registry

CSR Context Source Registrations

Dx.y Deliverable number y belonging to Activity x

EC European Commission

JSON JavaScript serialized object notation. It is an open standard file

format and data interchange format that uses human-readable text to

store and transmit data objects consisting of attribute–value pairs

and arrays (or other serializable values)

JSON schema JSON Schema specifies a JSON-based format to define the structure

of JSON data for validation, documentation, and interaction control.

JSON-LD It is a method of encoding linked data using JSON.

LDES Linked Data Event Stream.

ODALA ODALA is an initiative (European project) that aims to promote the

use of Big Data to facilitate and speed up decision-making in public

administrations. This initiative has a social focus and is designed to

help the use of Smart Cities technology simply and practically.

SHACL Shapes Constraint Language. Language for describing Resource

Description Framework graphs.

Document name: D4.3 Source Selection Building Block Page: 7 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Executive Summary

This document and work fit nicely at the heart of the GreenMov endeavours: as this project contributes to Green

Mobility in Europe using data, it must handle massive amounts of data. Where the volume represents a first

challenge, the speed or response time is key in several real time use cases too.

Activity 4 focused on the context broker or the central entity that manages the information flow. This document

describes performance and solutions to optimize performance in a federated scenario. Federation is relevant

where multiple context brokers are used for the same application.

By testing the impact of federation on query performance was measures and source selection was developed to

reduce the query execution time.

Document name: D4.3 Source Selection Building Block Page: 8 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

1 Introduction

1.1 Purpose of the document

Describe how different Context Brokers scale and also how source selection could be implemented over them.

1.2 Relation to other project work

It is part of Activity 4 with context broker federation testing executed by ATOS France and is a building block

that must be seen as part of the reference architecture..

1.3 Structure of the document

This document is structured in 3 major chapters.

Chapter 1 presents the introduction.

Chapter 2 presents the performance measurements and the solutions to increase the performance.

Chapter 3 presents the conclusion.

Document name: D4.3 Source Selection Building Block Page: 9 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

2 Basic software components

2.1 Context broker

2.1.1 Introduction to NGSI-LD

A context broker is used to connect various data sources and data consumers. It allows to share context data

between different trade in a decentralized way.

The three brokers we are comparing implement the NGSI-LD API ETSI specification. The latest version is 1.6.1

published in September 2022. The GitHub page of these brokers provide the level of compliance of each broker

with the specification.

NGSI-LD describes a data-model and an API using linked-data and JSON format. This standard allows users

to query with filtering, create, update, and delete context information. It allows user to subscribe to context data

and to receive notifications when entities are created, updated, or deleted.

In the framework of this project, brokers must also provide a temporal interface to be able to request historic

data.

Examples of Context Broker we see fit: Orion-LD + Mintaka, Scorpio, Stellio.

Another metric that can be useful when choosing one broker is the load performance of each broker. So, some

load tests have been made depending on the different use cases of the project.

2.1.2 Testing and performance

To make the tests, a Kubernetes environment hosted on OVHCloud [1] has been used. The cluster characteristics

were: 2 CPU, 8 GB of RAM and 50 GB of storage. The test tool that has been chosen is Hyperfoil. It is a web

benchmark tool, licensed under Apache. This tool allows the simulations of a lot of virtual users that can request

the system totally independently.

Four benchmarks have been performed with this first Kubernetes environment:

• The first benchmark was about the number of updates a broker can support per second

depending on the number of entities in the broker via POST “/ngsi-

ld/v1/entities/<ENTITY_ID>/attrs”.

• The second benchmark was about the number of GET requests a broker can handle per second

retrieving all entities in the broker via GET “/ngsi-ld/v1/entities?type=AirQualityObserved”.

• The third benchmark was about the number of GET requests a broker can handle per second

when retrieving one single entity via GET “/ngsi-

ld/v1/entities?type=AirQualityObserved&id=<ENTITY_ID>”.

• The fourth benchmark was about the number of GET requests, a broker can support per second

for historic data depending on the number of updates via GET “/ngsi-

ld/v1/temporal/entities/<ENTITY_ID>”. For each entity update, 5 attributes of the entity were

updated. There was only one entity into the broker.

Document name: D4.3 Source Selection Building Block Page: 10 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Finally, one last benchmark has been performed with a bigger Cluster Environment to test if horizontal scaling

could improve the results. A Kubernetes environment hosted on OVHCloud has been used with 2 nodes with 4

CPU, 15GB of RAM and 100GB of storage. The choice has been made to make again the fourth benchmark

describe above in order to compare the results.

In all these tests, “AirQualityObserved” entities have been used. Results are presented for each broker in the

next sections.

Results describing the evolution of the amount of updates per seconds according to the number of entities inside

the broker:

Figure 1: Evolution of update rate according to the number of entities.

Results for benchmark number 2, about the number of queries brokers can handle when retrieving all entities

depending on the number of entities:

Document name: D4.3 Source Selection Building Block Page: 11 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 2: Evolution of query rate for all entities according to the number of entities

Graph describing the number of queries each broker can support when retrieving one single entity depending

on the number of entities:

Figure 3: Evolution of queries rate for one entity according to the number of entities

Results for benchmark number 4, describing the evolution of queries per seconds on temporal interface

according to the number of updates:

Document name: D4.3 Source Selection Building Block Page: 12 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 4: Evolution of queries rate according to the number of updates

The graph below corresponds to the same benchmark than the one above but with a Kubernetes cluster with

more resources.

Figure 5: Evolution of query rate according to the number of updates with a bigger Kubernetes cluster.

Document name: D4.3 Source Selection Building Block Page: 13 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

2.1.2.1 Orion-LD + Mintaka

Figure 6: Orion-LD architecture

Orion-LD provides a NGSI-LD API for context data stored in MongoDB; it also provides a temporal API called

Mintaka. Temporal data are stored in a Timescale database. These tests have been made with the version 1.1.1

of Orion-LD and 0.5.15 of Mintaka. For these tests, the option ORIONLD_MONGO_ID_INDEX has been set

to true to automatically create an index on “_id.id” into MongoDB.

According to the figure 1, Orion-LD can handle around 1.200 updates per seconds whatever the number of

entities inside Orion-LD.

According to the figure 2 relative to the number of queries for all entities, the Orion-LD performance decreases

with the number of entities increasing. Orion-LD can manage almost 3.000 queries with 10 entities into the

broker but less than 150 queries with 10.000 entities into the broker.

The figure 3 shows the results for GET context data. Orion-LD can handle between 5.000 and 6.000 GET

request per second for context data whatever the number of entities in the broker.

When retrieving historic data on figure 4, Mintaka can handle more than 150 queries per second with a small

number of updates but this result drops quickly with the number of updates increasing.

Now, this result can be compared to results obtained with a Kubernetes cluster with more resources. On figure

5, it can be observed that Mintaka provides a slightly better performance with more resources.

Document name: D4.3 Source Selection Building Block Page: 14 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

2.1.2.2 Scorpio

Figure 7: Scorpio Architecture

Scorpio uses PostgreSQL to store context and historic data, it also provides both API for context and historic

data. Version scorpio-aaio-no-eureka_2.1.22 of Scorpio has been tested and some PostgreSQL options have

been tested to increase the number of workers but without significantly improving Scorpio performance.

Results on figure 1 indicate that Scorpio can handle between more than 600 updates per seconds with a small

number of entities but performance decreases with the number of entities increasing.

Regarding the performance for GET requests on the context API, Scorpio performance is decreasing with the

number of entities increasing in the broker. Indeed, it can handle almost 500 GET per seconds with a small

number of entities while it can handle less than 50 GET per seconds when retrieving 10.000 entities.

The third benchmark results shows that Scorpio can handle between 650 and 750 queries per seconds when

retrieving one single entity whatever the number of entities inside the broker.

The performance for GET requests on the temporal API are presented on figure 4. Scorpio performance is

decreasing with the number of entities increasing in the broker. Indeed, with only one update, Scorpio can

handle more than 500 GET per seconds. However, with more than 500 updates it can reach less than 10 GET

per second.

According to figure 5, we can see that Scorpio has slightly better results when tests are made on a Kubernetes

cluster with more resources.

Document name: D4.3 Source Selection Building Block Page: 15 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

2.1.2.3 Stellio

Figure 8: Stellio architecture

Stellio is a context broker developed by EGM. Stellio provides an API to query context and historic data that

are stored in TimescaleDB.

Results were obtained without modification in database configuration and with 6 replicas of the search-service

and api-gateway, which are micro-services part of the Stellio broker.

The first benchmark results indicate that Stellio has a very stable performance with the number of entities

increasing when updating entities. According to figure 1, Stellio can handle around 250 updates per seconds

whether for one entity or for 3.000.

The second benchmark about GET requests Stellio can handle to retrieve entities demonstrate that Stellio

performance decrease with the number of entities increasing. Stellio can handle almost 450 queries with 10

entities into the broker but less than 50 queries with 10.000 entities.

The third benchmark indicates that Stellio has a stable performance when it stands to retrieve one single entity

inside the broker. Indeed, Stellio can handle around 800 queries per seconds while the number of entities vary

from 1 to 5.000, but this amount drops to 600 queries per seconds with 10.000 entities into the broker.

The figure 4 shows the results for the fourth benchmark about the number of queries Stellio can handle on the

temporal interface depending on the number of updates made on the single entity inside the broker. The graph

indicates that Stellio performance is decreasing with the number of updates increasing. Stellio can handle

between 200 and 250 query per seconds with only one update while it can handle less than 10 query per second

with more than 500 updates.

Document name: D4.3 Source Selection Building Block Page: 16 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

When we compare previous graph with results obtained with more resources, we can see that results are much

better for a small number of updates but only slightly better when the number of updates is higher than 50.

2.1.3 Conclusion

These results show that the three brokers benchmarked have the same performance characteristic. When

updating entities and when querying one single entity they have stable performance with the number of entities

increasing. When querying all entities or querying all historic data of an entity, performance drops with the

number of entities or the number of updates increasing. This behaviour is quite normal because more the larger

the response size, the longer the request takes.

With these results, Orion-LD seems to be the context broker that can handle the most updates per seconds

whatever the number of entities that are into the broker. Furthermore, Orion-LD is also the best broker when it

stands to query context API to retrieve entities. However, when retrieving historic data Orion-LD has not the

best results, Scorpio and Stellio can handle more queries.

However, these results can only be indicative because the difficulty when it stands to compare brokers

performance is that there is a lot of parameters that can affect the results:

• First the size of the cluster where tests are made. The last benchmark was about testing to scale

horizontally the Kubernetes cluster. Results shows that it increases slightly the performance,

but more tests should be done with other benchmark to validate this trend. Furthermore, other

databases configuration should be tested with different sizes of cluster.

• Then some customization on databases have been made for Orion-LD and Scorpio but more

tests should be carried out to try new configurations (indexing databases, partitioning,

increasing the number of workers). Furthermore, the best configuration will necessarily be

different depending on the project. Indeed, the number of entities, the frequency of updates,

the number of queries and the cluster resources are some inputs that must be considered when

configuring the broker.

• Finally, database performance can be improved by creating databases clusters, something that

has not been tested during GreenMov project.

According to this, the choice of the broker will necessarily depend on the project and on the use cases of the

project.

2.2 NGSI LDES

The NGSI-LDES component acts as a scalable data synchronization/exchange interface that publishes one or

more Linked Data Event Streams (LDES) from NGSI-LD compliant context brokers. LDES defines a

hypermedia-based Web API that provides access to immutable and semantically annotated data subsets

containing the (historical) state of a certain data collection. For example, it can be used to read the latest state

of a bicycle sharing station but also allows to query for previous states of that same station, as reported in the

past.

To allow for efficient and scalable data access, an LDES defines a certain logical data structure that ensures that

historical data records, which will not change any further, are served as immutable resources (in terms of HTTP

Document name: D4.3 Source Selection Building Block Page: 17 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

caching), lowering the cost for serving historical data and thus improving scalability. Multiple logical data

structures can be implemented for an LDES, (e.g., linked lists, b-trees, skip lists, etc.). The choice is made at

design time and largely depends on the subjacent data sources and their querying capabilities. In the context of

GreenMov, a b-tree like hierarchical data structure was chosen, which is supported by the temporal querying

interfaces of NGSI-LD context brokers. Each node in the tree represents aggregated time windows of a certain

granularity (e.g., week, day, hour, etc.). Such design allows the LDES to behave as a virtualized view over the

data that is hosted in a context broker, i.e., the data does not need to be duplicated anywhere else, and also

lowers the cost for historical queries, since historical fragments only need to be request to the context broker

once and be served from cache onwards.

In terms of data content, the NGSI-LDES module produces an independent LDES stream for every entity type

that can be found within a NGSI-LD context broker. Each LDES will continuously produce versioned members

(as in LDES/TREE notation) which will contain links to the respective (versioned) entities which are defined in

correspondence to the specific (smart) data model used by the context broker.

Additionally, the NGSI-LDES component leverages the NGSI-LD types of interface of a context broker to

automatically generate a compliant DCAT metadata catalog. NGSI-LDES is available as open source on

GitHub[2].”

2.3 Coverage index.

Due to time limitations, the coverage index has not been implemented in GreenMov. In future work, the

geospatial coverage should be added to datasets in the DCAT description of NGSI-LDES.

2.4 Source selection building block

We implemented a source selection library to compare source selection on specific types of entities with certain

properties from a Context Registry (CR) with sources that expose a DCAT catalogue. A CR source selection

client is responsible for handling a CR by querying the context source registration list with query parameters

type and attributes. A DCAT source selection client is responsible for handling a source containing DCAT

information by using the Comunica query engine. Comunica was chosen thanks to its ability to query over

heterogeneous Linked Data interfaces. The source selection query is transformed into a SPARQL query and

used as input for the engine to query over the DCAT source. The library is open source available on Github[3]:.

Drawing 1 gives an example of searching for datasets that contain resource reports entities that in turn, have a

location property.

The source selection library is used in a demonstrator (Fig. 10) with the following process:

1. The user selects the type of entity and properties it wants to retrieve.

2. The consumer selects which CRs or DCAT catalogs need to be contacted.

3. Depending on (2), the source selection library runs a CR or DCAT source selection client.

4. The clients output the relevant sources that meet the requirements of 1.

5. The relevant sources and the required time to perform the source selection are listed for the

user.

Document name: D4.3 Source Selection Building Block Page: 18 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

.

Figure 9: Drawing 1- Example of SPARQL query to select datasets that contain entities of type ResourceReport and have a

location property.

Figure 10 Source selection demonstrator where relevant sources can be retrieved based on the type of entity and properties

PREFIX tree: <https://w3id.org/tree#>
PREFIX dcat: <http://www.w3.org/ns/dcat#>
PREFIX sh: <https://www.w3.org/ns/shacl#>
PREFIX pth: <https://purl.eu/ns/mobility/passenger-transport-hubs#>
PREFIX ngsi-ld: <https://uri.etsi.org/ngsi-ld/>
SELECT DISTINCT ?source
WHERE {
 ?dataset a dcat:Dataset ;
 tree:shape ?shape .
 ?service dcat:servesdataset ?dataset ;
 dcat:endpointURL ?source .
 ?shape a sh:NodeShape ;
 sh:targetClass pth:ResourceReport ;
 sh:property [sh:path ngsi-ld:location] .
}
}

Document name: D4.3 Source Selection Building Block Page: 19 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

Figure 10 shows a screenshot of the implemented demo user interface that makes use of the source selection

library to find relevant data sources for given entity types and properties. In the demo, the uses chooses an entity

type (oslo-passenger :ResourceReport1) and the ngsild:location property. It also provides the address of a

Context Source Registry and the URL of a reference DCAT catalog. With these input parameters, the source

selection library is able to query both the Context Source Registry API and the DCAT catalog using the

SPARQL template query shown in Drawing 1. The resulting selected sources are shown in the bottom of Figure

6. The source code of the demo is also available as part of the source selection

available as part of the source selection Github repository.[3]

2.5 Connection with open data portals

This is a feature under discussion in the use cases. Anyhow information about the connector to transfer the data

from the services to open data portals based on CKAN is included.

The CKAN Extension[4]. Publishing and consuming open data is a keystone for the development of applications

and the creation of an innovation ecosystem. CKAN is one of the most extended Open Data publication

platforms and is becoming the de-facto standard for data publication in Europe. Moreover, CKAN is an open

source platform which means it can be easily adapted and expanded.

The CKAN Extension integrates CKAN solution with the FIWARE platform, enabling the right-time context

information served by a FIWARE Context Broker and to be published as a dataset resource, making it easier to

be discovered and consumed as Open Data content. Additionally, this extension allows the integration with

FIWARE Security in order to enrich the access control and enable explicit acceptance of data terms and

conditions, usage accounting, or data monetization.

1 “oslo-passengers” is a prefix abbreviation for the base URI https://purl.eu/mobility/passenger-transport-hubs#

https://github.com/TREEcg/ngsi-ld-source-selection
https://purl.eu/mobility/passenger-transport-hubs

Document name: D4.3 Source Selection Building Block Page: 20 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

3 Conclusions

Testing of federated has confirmed that high performance cannot be taken for granted:

When one single entity is involved, they have stable performance with the number of entities increasing. When

querying all entities or querying all historic data of an entity, performance drops with the number of entities or

the number of updates increasing.

With these results, Orion-LD seems to be the context broker that can handle the most updates per seconds

regardless of the number of entities present in the broker. Furthermore, Orion-LD is also the best broker when

it stands to query context API to retrieve entities. However, when retrieving historic data Orion-LD has not the

best results, Scorpio and Stellio can handle more queries.

However, these results can only be indicative because the difficulty when it stands to compare brokers

performance is that there is a lot of parameters that can affect the results: the size of the cluster, database

configuration and database clustering.

According to this, the choice of the broker will necessarily depend on the project and on the use cases of the

project.

As alternative and complement LDES with inherent fragmentation has been tested for high performance use

cases. Source selection has been deployed as prototype to direct a query to the right context broker without

having to retrieve entities from all brokers and hitting the performance issues described above.

At the same time it remains a key message from Greenmov that LDES and NGSI-LD are compatible when

building service using linked data and especially when AI is enabled.

Document name: D4.3 Source Selection Building Block Page: 21 of 21

Reference: D4.3 Dissemination: PU Version: 1.0 Status: Final

4 References

[1] https://www.ovhcloud.com/en/

[2] https://github.com/TREEcg/ngsi-ldes

[3] https://github.com/TREEcg/ngsi-ld-source-selection

[4] https://github.com/conwetlab/FIWARE-CKAN-Extensions

	Document Information
	Table of Contents
	List of Figures
	List of Acronyms
	Executive Summary
	1 Introduction
	1.1 Purpose of the document
	1.2 Relation to other project work
	1.3 Structure of the document

	2 Basic software components
	2.1 Context broker
	2.1.1 Introduction to NGSI-LD
	2.1.2 Testing and performance
	2.1.2.1 Orion-LD + Mintaka
	2.1.2.2 Scorpio
	2.1.2.3 Stellio

	2.1.3 Conclusion

	2.2 NGSI LDES
	2.3 Coverage index.
	2.4 Source selection building block
	2.5 Connection with open data portals

	3 Conclusions
	4 References

