o 7)

Green mobility data models and services for
smart ecosystems

D4.2 GreenMov Reference Architecture and guidelines v2

Document Iden

Contractual Delivery Date 28/02/2023

Actual Delivery Date 28/02/2023
Responsible Beneficiary FIWARE Foundation
Contributing Beneficiaries IMEC, ATOS

Dissemination Level PU
61

Total Nu r of Pages:

‘ Sustainable Mobility, Data Models, Reference Architecture ‘

This document is issued within the frame and for the purpose of the GreenMov project. This project has received funding from the
European Union’s Innovation and Networks Executive Agency — Connecting Europe Facility (CEF) under Grant AGREEMENT No
INEA/CEF/ICT/A2020/2373380 Action No: 2020-EU-IA-0281. The opinions expressed and arguments employed herein do not
necessarily reflect the official views of the European Commission.

This document and its content are the property of the GreenMov Consortium. All rights relevant to this document are determined by the applicable
laws. Access to this document does not grant any right or license on the document or its contents. This document or its contents are not to be used or
treated in any manner inconsistent with the rights or interests of the GreenMov Consortium or the Partners detriment and are not to be disclosed
externally without prior written consent from the GreenMov Partners.

Each GreenMov Partner may use this document in conformity with the GreenMov Consortium Grant Agreement provisions

(*) Dissemination level.-PU: Public, fully open, e.g. web; CO: Confidential, restricted under conditions set out in Model Grant Agreement; CI:
Classified, Int = Internal Working Document, information as referred to in Commission Decision 2001/844/EC.

Document Information

Related Activity Activity 4
Related Deliverable(s) RbZAI

Document Reference

D4.2

Dissemination Level (*)

PU

List of Contributors

Alberto Abella FIWARE Foundation
Brecht Van de Vyvere IMEC
Rémi Ollivier ATOS

Document History

0.1

21/09/2022 | Alberto Abella (FF) Starting ToC
0.2 14/11/2022 | Alberto Abella (FF) Contributions from Activity 5
0.3 28/11/2022 | Brecht Van de Vyvere | Update coverage index, explain source
(IMEC) selection library
0.4 01/12/2022 | Alberto Abella (FF) Reordering and filtering contents
0.5 21/12/2022 | Alberto Abella (FF) Indexing illustrations and tables. Review of
the content
0.53 31/01/2023 | Alberto Abella (FF) Restructuring because of creation of
deliverable 4.3.
0.6 08/02/2023 | Alberto Abella (FF) Extension of the LDES description and
Tulian Andrés Rojas zomp}e:fed the components installation
(IMEC) escription
0.65 15/02/2023 | Remi Ollivier (ATOS) Contribution to section 2.4

Document name:

D4.2 GreenMov Reference Architecture and guidelines v2

Page: 2 of 61

Reference:

D4.2

Dissemination: PU

Version:

1.0 Status: Final

Document History

16//02/2023 | Alberto Abella (FF) References review and new ones

0.8 22//02/2023 | Alberto Abella(FF) Review structure and contents based on the
comments of the internal reviewer

0.9 27//02/2023 | Alberto Abella(FF) More restructuring, adding details and
formatting

0.91 27//02/2023 | Alberto Abella(FF) Removed tracked changes

0.92 27//02/2023 | Alberto Abella(FF) Formatting

0.95 28/02/2023 | Maria Guadalupe | Quality Review Form

Rodriguez (ATOS)
1.0 28/02/2023 | Carmen Perea (ATOS) FINAL VERSION TO BE SUBMITTED

Quality Control

_ Who (Partner short name) Approval Date

Reviewer Ignacio Elicegui (ATOS) 27/02/2023

Quality manager Maria Guadalupe Rodriguez (ATOS) 28/02/2023

Project Coordinator Carmen Perea (ATOS) 28/02/2023
Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 3 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Table of Contents

Document INTOTTATIONoouiiieiiitieiereee ettt sttt et b et e et et e nte s et et e ebeenee e 2
TaADIE OF COMEEIILS ..ottt ettt ettt ettt s b et b e s bt et e bt et e s bt eatenbesbe et e beebee e ene 4
] Ao ¥ 1 USRI 8
| o) AN (0117 14 TSRS 9
EXCCULIVE SUMIMATYtiiiiiiiiiiiieie ettt ettt et e e tee e st eeetee e tbeeesbeeessseesssesessaesssasessseessseeessseessseaans 10
I TITOQUCTION ..ttt ettt et s bt et e bt s et et e e bt e st et e ebe et e sbeeneenteseeeneenneas 11
1.1 Purpose of the dOCUIMENLcc.iiiiiiiiiiieie ettt ettt e st te ettt et esaeesntesnbeenseenseenseens 11
1.2 Relation to Other ProJECt WOTK........ccciiiiiieiciiieiiee ettt re e et e e b e e ssbeeessaeessseeensaeessneas 11
1.3 Structure of the dOCUMENToc.iiiiiiiieie ettt sttt st s be e 11
1.4 Glossary adopted in this dOCUMENTcocuiiiiiiiiiie ettt e e e tae e ebeeesereeseneas 12
2 BasiC SOTtWAIe COMPOMNENLSccveeeiiieiiieeiiierteeeeteesteeetteesseesseeessseessseeessseessseeessseessseesssseesseeans 14
2.1 Introduction to FIWARE architecture, standards and coOmponents...........c.cceceevereeieneneeneneneennenn 14
2.2 Reference architeCture I8VELScoviiiiiiiiiiie et 14
2.3 GlODAL QIAZIAML......eeeiiciiieeiieieeitesteestteete e et eteete e s ae st e essee st e saesseessseasseasseesseesteassseasseasseanseessaesseens 15
2.4 Core components of the reference architecture............coceeceeiiiiiiniiiii et 18
241 CONLEXE DIOKETeiiiiiiiieite sttt h e st st e bt et e bt e bt e s bt e sateemteebeebeenaeens 18
242 NGSIELDES ...ttt sttt s h et e h et e st et e bt s bt et e b st et bt e e e nas 18
243 TOT AZENLS ..ottt ettt ettt ettt e ettt e s ab e e bt e bt e e s bt e e bt e e st e e e beeeeabeesbaeenateas 19
2.5 Persistence components of the reference architeCture............ccvevvevieiciieiiiinierieiece e 20
2.5 1 CY@NUS-LD ittt et et b ettt e st e e bt e e st e e e bt e e eabeesbaeenateas 20
2.5.2 Other persiSteNCEe COMPOMNENLSeerveerrurrerreerirreerseeestreesseeaseeessseessseeessseesssessssseessseesssesessseesssees 20
2.6 SECUTILY COMPOIIEIILSveeuvieiieriieeieeteeieeteesttesteesteeeteesteenseeseessaesssessseanseesseesseesssesssesnsesnseesseesseesseens 20
2.0. 1 KEYCLOAK ..ttt sttt et ettt e bt et e st e et e ente e teebee et 20
2.0.2 KEYTOCK .. tiitiiieiieti ettt st e ettt ettt et et e st eesbeesb e e s s e e saessaeasbeasbeesseesbeesta e taensbeasseenbeensaensaeseens 21
2.0.3 WA ettt ettt ettt et h et s b et b e e it ettt naes 21
2,64 AUTRZIOTCE ...ttt et b ettt et b e bt saee st s 21
2.7 OtNET COMPONEILSveeriserieereereesseesseesteeseesseesseesseesssessseasseesseesseesssessssassessseesseessessssesssessseesseessesssenns 21
Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 40f 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

2.7.1 Connection with open data POTTAIS..........cccuerviriircrieiieriiesee e ere e et e aesresereeereesseeseeseeens

3 Deployment of the platformcccveiieiiiriiiii e
3.1 Installation of the core CONteXt BIOKETc.coiiiiiiiiiiiieie e e
3.1.1 Installation of Orion-LD on MongoDBccccecciiiiiiiiiiiieiiesie ettt

3.2 PerSiStence COMPONENLSeeuiruirieriirtieierieeitente it ettt ette bt ebe et e sbeestesbesbtentesbeeatesbeeatebesbeeneenbesseeneene
3.2.1 InStallation OF CYGNUSececuiiiiiieeiieeieeeiteeste e tee ettt esteesteeessbeessseeessaeessseesssaeessseesssesesssesssseeans

3.3 Installation of SECUTItY COMPONENLScovuiriiruieriiriietinieetenteeit ettt ettt et ettt e b et e b siee e
3.3.1 Installation of KeYCIOAKcccviiiiiiiiiiieiiie ettt ettt et e e bae e seae e sateeeseveesareeens
3.3.2 Installation Of KEYTOCKcc.eeiiiiiiiiiiiiesit ettt ettt et e st e seaessbeeste e taessaesssesssessseensaesseens
3.3.3 Installation 0f WAoccuieiiiiiiiiiiieie ettt sttt et e st esneeenteenseenseeneee s
3.3.4 Installation of AUtRZIOTCEcc.eeiiiiiiiiiii et

3.4 Configuration of federated SCENATIOScccvevvieriieriierieireeire et eree e eesreereesreesseessaessaessnesssessseenns
34.1 Types of deployments simple and advanced.............cccueeeiiieiiiiiiiieiiie e e
342 Advanced dePlOYMENLS.........ccccvevieriiiiiiiiiieieesteseesteereereeteesteessaesebessbeesseesseesseesssessseesseeseessenns
3.4.3 Federated deplOYIMENLScoeeriiriiiiiriiiiieierieetee ettt sttt ettt ettt et bt e b
344 MUIEENANCY ...vviiiiiieeiieeeiie ettt esteeetee ettt e sbeeetteessbeessteeessseesssaeesssaeasseeassseessseeassseesssesssseeesssesssseeans
3.4.5 Distributed OpEration MOUESceceeiiieiiieriieriiesierreereereesreeseesaesreeseeseesseesssesssessseassessseesseens

4 Operation of the Platformccooiiiiiiiiiii e
4.1 OPETALIONAL ASPECES ..vviieuiiieiiieeiie et eeie e ettt e eteeetteestbeeebeeessseesseeesseessseeassseessseesssssessseesssseesssesssenans
4.2 Secure code, from deSign t0 AElIVETYc.cecuiirieriieiieie ettt ettt ettt e sebe s enseenseeseesenens
43 SECUIE DY AESIZN ...ttt ettt ettt et e s bt e st e st e et e e be e bt e saeesseesneeemteenbeeseenseens
4.4 DeEPendeNnCIes SCANMINGc.eecvrerreerreerreerseerresseaseasseesseesseessessssessseasseessessseesssesssssssesssessseessesssessseens
4.5 DEVSECOPS . ettt ettt ettt ettt ettt ettt h bt bt bt e ettt e bt e e e bt e e bt e e e abe e e baeeshbeeeabeeebbeesabaeenaae

5 Data ATCRITECIUTIEeetieiieiiieiie ettt ettt ettt e sb e nb e sae e
5.1 Data Storage architecture and technical fOrmatcocceevviieiiiiiieniierieeeee e
5.2 Basic data classes / @NLILIESceectierieriiiieeit ettt ettt ettt ettt ettt et sat e st eare et e

6 CONCIUSIONS ..ttt ettt ettt ettt et e st e et ese et e s aeeneeseeeneeneas
T RETETEIICES ...ttt sttt sttt

Annex I. Requirements for a generic enabler............cooieiiiiiiiiiiiiiiieee s

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page:

Reference: D4.2 Dissemination: PU Version: 1.0 Status:

5of 61

Final

Licensing and open SSF Best practices SIZNAtUIE........ccuvevververrierierrieseeseesreeseesseesseesseesssesssesssesssesssessseens 40
GENETAL TEQUITEIMEIILSeutieutieiieeiie et et et ee st e st e et e bt e bt esbeesutesueeem st enseenseasseesasesnseeaseenseeseanstesnsesnseenseenseeseens 41
Documentation TEQUITEIMEINLSveeirreirieerireerteeeetteesseessseeeseseesseeessasesssesessssesssessssesesssessssessssssesssessssssesssees 41
DeveloPMENt TEQUITEIMIENLSeiviereeieeriieseesteeteeteeseesseesstessseesseesseesseesssessseasseasseesseesseesssesssessseessesssessseens 41
Annex II. An example of CONTIGUIATION.co.eiriiiiiiiiiiieeeet et 42
HOW 10 SCTUP «.eevvieeiieeiee ettt tee ettt e et e et e et e e s bt eessbeessseeassseessseeessaeeassaessssaesseeansaeesssaessseeansseessseennsseenssens 42
1. Prepare AWS QCCOUNT....c...ooiiiiiiiieieet ettt ettt ettt ettt st ettt e bt e smeesae e st emneeneenaeens 42
2. InStall OPENSIft CIUSLET ...c.vviiiiiieiieeceeee ettt e et e e b e st e e e ebeeeabeeentaeessseeessseensseas 42
3. INSTAI] COITITICALES ...ttt ettt ettt ettt s be et b e ee et e e bt et e st e e st e teebeeneeebeeneeneene 43
Clone the acme.sh ZIthUD-TEPO.......cc.oiiiiiiiiiiii ettt st 43
SetuP AWS CIEdeNtialS.......oieiiiiiiieii ettt e et e e teeste e e s tbeesssaeesseessseeessaeesssaeessseessseeans 43
ODLAIN COTLITICALES -...veveeueitieieite ettt ettt sttt ettt e e bt et e bt e a et e st e eae e bt ss e et e eaeensesteeneensesseeneenbea 43
CIEALE the SECTELS ... uti ittt ettt ettt e b e b e a e et e bt e bt e bt e sbeesateeabeeabe e bt esbeesaeesmteenbeenseesbeens 43
Patch ingress-controller and API-SEIVETc.eccverierveriirriereeteeseeseesresseeseeseesseesseesssessseesseessessseesssens 43
UPAAte KUDECOMIIZ ...ttt ettt et et ettt sbe et b et et bt eaenaes 44
VETIEY SUCCESS ©oeuuviieiiieiiieeiiteestee ettt esteeette e ebeeesbeeestseessseeessseeasseeassaeesssaeasssaasssaeassseenssaessseeansseesssessnsseensses 44
4, INSLALl ATZOCD ... iiiiieiieieeee ettt ettt et et e st eseb e e b e esbe e seessaessbessseasseasseassaesssesssassseasseasseessenseesseens 44
CTEALE NAMIESPACEeeeuveeeutieetteeeitee ettt e sttt e eatee ettt e subeeeabeeeabteesabee e bbeesabeeebteesabee ettt eaabeesabaeenbbeesubeeenbeeesabeeans 44
INStAll ATGOC D OPCTALOT .. ccuuvieieiieeiieeeieeeteeeriteeetteertaeesbeeetbeessbeeessaeessseeasssaessseesssseesseesssesasseessseesssessssees 44
Deploy an instance 0f ATZOCDcccviiiiiiiieiiecieecieeee ettt ettt et e ste e eteebeesaeesseesssesnseenseenseeseenseens 45
5. Prepare ArgoCD for namespaced deploOymentsccceereeririiiiiiierieseerieeee ettt 46
6. DICPLOY NAMESPACES. ..cuveervierreerereereeieesttesttesttesreasreasseesseesseesssesssessseasseesseesssesssesssessseesseesseesssesssesssessesssesnes 47
Click create and wait Until itS TUNNINE:coviiiiiiiiiiiieiier ettt sttt et e st e s enteeneeebeesaee s 49
7. Deploy bitnami/SEalEd-SECTELSuiiruiiiiiieiiieeciee ettt esteeeteeeteesteeeteeesebeessbeeesbeessseeessseesssessssseesssessnsenans 49
Click create and wait Until itS TUNNINE:occeeviirriireiieeiiesierie e et eee e seesaeebeete e seesseessnesnseenseeseesseens 51
8. CTEALE SECTELS ..uuieiiieeitte ittt ettt et ettt e bt e ettt e bt e s ab e e ettt e sabee e ba e e suteesabeeebteesabtesabaeeambeesabeeesbbeesabeeenbbeesabeeans 51
INStAIL KUDESEALottt sttt ettt et et e et et e eae e e bt ene e eeeneeeeens 52
SEAL THE SECTEL.....ceueteeiieie ettt ettt et bt et s bt et e e bt e et et e bt et e sbeeat et e s bt e e e nbeeneenee e 52
Push the mongodb-sealed-secret.yaml file t0 YOUT TEPOSIEOTYeevvriererieiriiieiiieeiie ettt 53
Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 6 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

Fill out the form - in contrast to "sealed-secrets" this will consist of plain manifests(like "namespaces") 53

Click create and wait until the sealed-secret is deployed and an unsealed secret is created from it:......... 54
9. Deploy MONZODB..... ..ottt ettt a ettt e bt e bt e e ae e e et e et e bt e bt e bt e bt e sateeateente e 54
CLick 0N "INEW A PP .ttt ettt ettt a et s b et e s bt s st et e e bt et e s bt eneetesaeeneenbeas 54
FAIL UL the FOTM.....ocuiiiiieiieieeeeee ettt ettt ettt e st e s e s steeabeebe e beesseessbesnseenseenseenseenseens 54
CLiCk CTEAte AN WAL 1 ...coutiitiiiiiiieet ettt ettt et e st e e s bt e sht e sab e e bt e bt e s bt e sbeesateemteenbeenbeens 55
10. Deploy OTion-LDccoiiiiiiiiieienieee ettt ettt et ettt et s ht et sbe e st et e bt et e sbeeate b 56
CLICKk 0N "NEW APP" ..ottt ettt et et e et e et e it et e e st et e st e ens e seeseenseeseensesseeneensesssensansens 56
Fll OUL the FOTIN.....coiiiieiiieeee ettt ettt ettt et e b s bt et e bt ene e teemeesenas 56
AQVANCEA TOPICS.+e.utentittetertiettete ettt ettt ettt et et s bt et e bt e bt et e e bt et e sb e ea b e bt sbeea b e b e e bt e bt e bt e st e nbeest et sbeentenbe 56
ANNEX IIL, COMNCOPLS. .eeevieeiiieiiieerttesteeerteestteesteeestee e tteessseeassaeessseesssseessseeassesassseesssesessseessseesssseessenans 57
REACTIVE MANITESTO....c..eeueitieiieitiee ettt ettt h et b e e ettt e bt et e bt e st et e saeemtenbeebeeneesbesneeeene 57
BlUe-Green deplOYIMENL........ccuiiiiiiiiiieciieeiee ettt et e e e e v e e e te e e tbeesebeeesbaeesssaesasesesseessseeansseesssesesseesssens 57
(O 1T A 1573) 10) 1112 oL SR PUPUSUSN 58
ANNEX TV, SECUTTLY ...ttt sttt s b et be st be et ettt eaenaes 59
General SECUTity CONSIACTALIONScccuvieiiieeiieeetie ettt eeieeetee ettt e steeetaeesebeestaeessseesssaeessseessseeansseessseeesseensses 59
SecUrity Of COMMUNICALIONSccuviiviirieiieriiestieseesteeteereeteesteesteesssessseesseesseesseessaesssesssessseesseesseesseesssesssensses 60
MANAZEMENT OF SECTEESeetieieiiieiieieeieertee et et e et e bt e bt e steesutesate e bt esbe e bt esstesatesateeaseebeeabeasntesnseenseenseenseesseens 60
SIOW AOWN AEEACKETS ...ttt ettt sttt et et e e s bt e sbeesabesateembe e bt e beesaeesneeeaeas 61
INtruSION AELECTION SYSTEIMeeueiiieiieiiieieeiiesieeete et ettt et e stesbe e beesseeseesseessaessseanseesseesseesssesnsesnseenseeseesseens 61
I NI 11 17<T o4 1 ST PUPRUSRPSN 61
Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 7 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

List of Figures

Figure 1: Global diagram for the reference architecture. source: FIWARE reference architecture for cities

AdAPLEA TOI GIEENIMOV......viiiiiiiiiiieeiee ettt ettt e ettt e et eetee e ebeeesbaeessbeeasseeesseesaseesnsseassseesnsssesssesanseeesseeanseean 18
Figure 2: Scenario for broker federationccooioiiiiiiiiiiieeeee ettt 28
Figure 3: Diagram for distributed operation MOAEScccererriiririininieie ettt st 29
Figure 4: Entity and attribDULEScceoiiiiiiiiieie ettt ettt e b et e st st e et eesbeesbeesaneeaeeens 35
Figure 5: Argo console MNStAlATIONoo.eeiiiiiieiiiieeee ettt ettt st sbe e 43
Figure 6: Argo console CONTIGUIALION.ciiiiiiiieiieitiet ettt ettt ettt et e st e st e et e beesbeesaeesanesaeeens 43
Figure 7: Arg0 deplOYMENt SCIEEMcc.eiiuiiiiiiiiiiiieitet ettt ettt sttt et e bt e s bt st st e beesbeesbeesaeesaneens 44
Figure 8: Argo namespaces CONTIGUIATIONcc.eeruirtiriiriiiierie sttt ettt sttt ettt be et sbe st et sbe e e sbe e 45
Figure 9: Argo. Creation Of NEW QPPeeiieiiiiieeiieitieet ettt ettt et e sttt e bt e bt e s bt e satesateemteebeesbeesbeesaeesnneans 46
Figure 10: Argo. Configuration Of NNEW QDDcveevveeriierieriiiiieiiesieeseeseesteereesteeteesseesssesssesssaessaesseesssesssesssenns 46
Figure 11: Argo. MONITOTING OF APP .euverteeutiiiitieiiitietesieet ettt sttt ettt st st e e b e 47
Figure 12: Arg0. CIEate NEW @PP -veerveerteertierieiieeieenttent e site et ettt ete e bt e sheesaeesatesbe e bt esbeesseesateeateenbeenbeesbeesaeesaneans 47
Figure 13: Argo. Creation Of MEW @PPceverieeieieetieieeteeeie ettt ettt ettt et e eat et s st et e et et entesseenteeneeneenes 48
Figure 14: Argo. MONItOTING Of @DPS. . uteiuieiiieiieitestieet ettt ettt ettt et e bt e bt e s beesaeeeabeenteebeesbeesaeesasesnneens 49
Figure 15: Argo. Creation Of NEW @PPceveoieeieiietieierte ettt ettt ettt et e at et e s bt et e ste et eteseeenteeneeneenes 52
Figure 16: Argo. Secret CONFIGUIEAeooiiiiiiiiiiiieiee ettt ettt et st sbe et 52
FAGUIC 17 ATZO. INEW @PD -uviiiurieeiiieiiieetieesteeeteeestteestteesaeessseessseessseeessssasssesassssessseesssesasssessssseessssessseesssseessses 53
Figure 18: Argo. Deployment of MONgOdDccoeviiriiiiiiiiieiieieree ettt et e e saessaeseaeseneessaens 54
Figure 19: Argo. Creation Of EW @PP ...ceceeeiieiiieiieitieeiie ettt ettt et e st eete et e bt e bt e s bt e saeeeaeeenteebeesbeesseesasesnneens 54
Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 8 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

List of Acronyms

Abbreviation SIS

acronym

CI/CD
Continuous integration / continuous deployment. Set of practices used in
software development that aim to streamline the development and
deployment process, making it faster and more efficient.

CSR Context Source Registrations

Dx.y
Deliverable number y belonging to Activity x

EC European Commission

GE Generic Enabler. Every approved component of the FIWARE framework.

JSON . i . . .
JavaScript serialized object notation. It is an open standard file format and
data interchange format that uses human-readable text to store and transmit
data objects consisting of attribute—value pairs and arrays (or other
serializable values)

JSON schema JSON Schema specifies a JSON-based format to define the structure of
JSON data for validation, documentation, and interaction control.

JSON-LD It is a method of encoding linked data using JSON.

LDES Linked Data Event Stream

ODALA ODALA is an initiative (European project) that aims to promote the use of
Big Data to facilitate and speed up decision-making in public
administrations. This initiative has a social focus and is designed to help the
use of Smart Cities technology simply and practically.

SHACL Shapes Constraint Language. Language for describing Resource
Description Framework graphs.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 9 of 61
Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Electronic_data_interchange
https://en.wikipedia.org/wiki/Human-readable_medium
https://en.wikipedia.org/wiki/Attribute–value_pair
https://en.wikipedia.org/wiki/Array_data_type
https://en.wikipedia.org/wiki/Serialization
https://en.wikipedia.org/wiki/Linked_data
https://en.wikipedia.org/wiki/JSON

Executive Summary

This document outlines the second version of the GreenMov common reference architecture aimed at
implementing city use cases. It extends the security components described in the first version and remove
others not useful for the current use cases. It also incorporates approaches for enhancing scalability and
provides a set of guidelines for specific scenarios using city pilot examples. It also incorporates feedback
gathered from the use cases.

The architecture supports smart city services under activity 3 and the implementation of the use cases under
activity 5, as well as partially integrates data sources and entities stored in different elements of the
architecture described in the data models described in activity 2.

It is mostly based on FIWARE enablers although other components, Grafana, are also included. It also
provides links for deploying necessary components to support local customization in each use case. This
deliverable is complemented by document D4.3 which delves into advanced concepts, such as performance
analysis of core components in various configurations and configuration of a system federation. The document
outlines the high-level architecture and its elements and how they connect, covers data persistence in services,
and provides identification and access control. It ends with recommendations on platform operation and
complementary information on main element configurations in the annexes.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 10 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

1 Infroduction

1.1 Purpose of the document

This document extends the content of the deliverable 4.1 with a tighter integration of the requirements coming
from the use cases and adding more specific instructions on how to deploy the reference architecture.

1.2 Relation to other project work

This document is the second version of the GreenMov reference architecture, including new components and
an extended description of the software components and data flows. Additionally, the performance analysis
and other configuration options have been also extended from previous deliverable 4.1. It is also added some
consideration for the deployment and exploitation and about security.

1.3 Structure of the document

This document is structured in 6 major chapters, including this one Chapter Introduction 1 and 3 annexes.

The chapter 1 is an introduction to the purpose of this document, its relationship to other documents
generated, its overall structure and the glossary of terms to understand its full content of the document.

Chapter 2 describes the main components to be used from a high-level architecture diagram to the detailed
description of the individual components and their connection with other external systems. It includes an
analysis of the performance of the core component, the context broker, in different configurations and
implementations.

Chapter 3 provides guidance on the deployment of the different components, including the data persistence
components, those related with authentication and access control, visualization and how to federate different
instances.

Chapter 4 introduces operation aspects to run the platform and includes a specific section regarding security.

Chapter 5 states the principles of the data architecture that is further developed in the documents generated
of the activity 2.

Chapter 6 presents the conclusions of the document.

There are also 4 annexes, the first one devoted to the description of the requirements of a software package to
become a generic enabler approved to belong to the FIWARE framework. The second annex describes an
extensive example on how to deploy several of the core components of the platform. Finally, the third annex
describes 3 key concepts for the operation of the platform and the fourth provides some recommendations for
the security of the platform.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 11 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

1.4 Glossary adopted in this document

This glossary replicates most of the terms of the glossary in deliverable 4.1 and it is included here only for
clarification purposes for those readers that have not read previous deliverable.

Context broker. A Context Broker is an open-source platform that allows developers to manage and
store contextual information about a network of smart objects, devices and other sources of data. It
provides a unified view of the contextual information and allows for real-time querying, geoquerying
and updates of the information. The Context Broker can be used in loT, smart city and smart industry
applications to improve data management and enable better decision-making. The main functions of a
context broker are:

o Context information storage: The context broker stores context information, such as device
data or application data, in a centralized repository.

o Context information retrieval: The context broker enables applications and devices to
retrieve context information as needed.

o Context information distribution: The context broker can distribute context information to
multiple applications and devices in real-time.

o Context information management: The context broker provides APIs for managing context
information, such as creating, updating, and deleting entities.

o Context information integration: The context broker can integrate context information from
multiple sources, such as sensors, devices, and applications, into a unified view.

o Context information querying: The context broker enables applications to query context
information in a flexible manner, such as by location, time, or entity type.

o Context information subscription: The context broker can support subscriptions, allowing
applications to receive notifications when the context information they are interested in
changes like reaching a threshold or the creation of an attribute.

Cygnus. It is a software package for managing the history of the context that is created as a stream of
data which can be injected into multiple data sinks, including some popular databases like
PostgreSQL, MySQL, MongoDB or AWS DynamoDB as well as BigData platforms like Hadoop,
Storm, Spark or Flink.

Draco is another software package to provide a data persistence mechanism for managing the history
of context. It is based on Apache NiFi and is a dataflow system based on the concepts of flow-based
programming. It supports powerful and scalable directed graphs of data routing, transformation, and
system mediation logic and also offers an intuitive graphical interface.

Kubernetes. Kubernetes, often abbreviated as "K8s", is an open-source container orchestration
platform that automates the deployment, scaling, and management of containerized applications.
Containers are a lightweight and portable way to package and deploy applications, and Kubernetes
provides a way to manage and automate these containers at scale. It can run on a variety of platforms,
including public, private, and hybrid clouds, as well as on-premises data centers.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 12 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

e Kurento. is a component that enables real-time processing of media streams supporting the
transformation of video cameras into sensors as well as the incorporation of advanced application
functions (integrated audiovisual communications, augmented reality, flexible media playing and
recording, etc).

e Linked data. It is structured data, which is interlinked with other data, so it becomes more useful
through semantic queries.

e Man-in-the-middle. Cyberattack where the attacker secretly relays and possibly alters the
communications between two parties who believe that they are directly communicating with each
other

e Near to real-time system. A near to real-time system is a information system that processes and
responds to inputs in a timely manner, where the response time is quite relevant but not critical for the
correct functioning of the system. For this document it means in the range of a second to few minutes.

e Orion. Software solution for context information management compliant with NGSIv2 specification,
created by Telefonica, FIWARE Foundation and other entities, available as a Generic enabler of the
FIWARE platform [1].

e Orion-LD. Software solution for context information management compliant with NGSI-LD
specification, created by Telefonica, FIWARE Foundation and other entities, available as a Generic
enabler of the FIWARE platform [2].

e Real-time system. A real-time system is a information system that processes and responds to inputs
in a timely manner, where the response time is critical for the correct functioning of the system. For
this document it means in the range of fraction of a second or shorter. In real-time systems, the
response time is strictly bounded and determined by the system's requirements, and the correctness of
the system's behavior depends not only on the logical result of computations, but also on the time at
which the results are produced.

e Scorpio. Software solution for context information management compliant with NGSI-LD
specification, created by NEC and other entities, available as a Generic enabler of the FIWARE
platform [3].

e Stellio. Software solution for context information management compliant with NGSI-LD
specification, created by EGM and other entities, available as a Generic enabler of the FIWARE
platform [4].

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 13 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

2 Basic sofftware components

2.1 Introduction to FIWARE architecture, standards and components

FIWARE NGSI is the API exported by a FIWARE Context Broker, used for the integration of platform
components within a "Powered by FIWARE" platform and by applications to update or consume context
information. FIWARE NGSI API specifications have evolved over time and now it is a standard under the
umbrella of ETSI ISG CIM group [5] which the name ETSI NGSI-LD standard. The FIWARE Community
plays an active role in the evolution of ETSI NGSI-LD specifications which were based on NGSIv2 and
commits to deliver compatible open-source implementations of the specs. The FIWARE Community plays an
active role in the evolution of ETSI NGSI-LD specifications and commits to deliver compatible open-source
implementations of the specs (e.g., Orion-LD, Scorpio, and Stellio).

Building around the FIWARE Context Broker, a rich suite of complementary FIWARE Generic Enablers are
available, dealing with the following functionalities:

e Core Context Management manipulates and stores context data so it can be used for further
processing. Dark blue rectangle in the middle for the diagram with the entities stored in it and some of
their attributes.

e Interfacing with the Internet of Things (IoT), Robots and third-party systems, for capturing updates on
context information and translating required actuation. Turquoise sections and light blue ones in the
lower part of the diagram.

e Processing, analysis and visualization of context information, implementing the expected smart
behavior of applications and/or assisting end users in making smart decisions. Upper part with red
background and boxes below them.

e Interfaces with other systems and identify and access management on the right part of the diagram.

2.2 Reference architecture levels

The Reference Architecture should address how the integration of data and information across different
systems on the use cases will be achieved, ensuring sustainable and efficient service provisioning.
Interoperability should be supported in line with relevant standards (REST, NGSI, JSON-LD).

FIWARE is a curated framework of open-source platform components which can be assembled together and
with other third-party platform components to accelerate the development of Smart Solutions. The main and
only mandatory component of any “Powered by FIWARE” platform or solution is a FIWARE Context Broker
Generic Enabler, bringing a cornerstone function in any smart solution with the purpose to manage the context
information created from one or different context providers and consumed by one or several context
consumers.

In this respect, the Context Broker technology will play a cornerstone role for the integration, following a
system of systems approach, of data and information across the systems implementing the different services

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 14 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

for a given focus area (e.g., traffic management, environmental impact, or other system in relation to public
services). Some of these systems will be provided globally as a service from public clouds. The Context
Broker building block has been the preferred technology for other EU programs.

The figure in the next chapter shows a diagram with the main components based on a FIWARE reference
architecture for smart cities, where the requirements for the different use cases Murcia y Molina, Nize and
Flanders has been taken into consideration.

The central element of this architecture is the context broker where the retrieval and sharing of the information
happens.

It has four main levels. The upper level is the one for the connection with the legacy systems of the city or
other general applications. This level will be extremely customized for every use case.

The second level is the one with the context broker and some adapters for the connection with the legacy
systems. It has to be noted that in right side of this level there are the identification and identity blocks. The
use and sharing of these elements in the second level allow the flexibility to provide solution to the different
use cases but keeping the same basic software structure which allow scalability and shared knowledge.
Besides this, the fact that these components come from a FIWARE reference architecture ensure a wide
knowledge base to solve any issue of the use cases.

The third level of the schema is populated by the adapters with the IoT world, cameras, sensors, etc. Again,
being based on the FIWARE components ecosystem ensures the availability of many solutions for the
connection a large database of integration with other IoT elements and some share software frameworks for
these cases in which a customization is required.

The lower level (fourth) includes those loT elements and other data sources for the solution of the city that can
be connected thanks to the previous level without much hassle. This level retrieve data from different sources
that can be modeled into common data models, eventually allowing seamless data sharing between use cases
or city’s ecosystems and being stored into entities in the second level.

2.3 Global diagram

This simple diagram was created after gathering the requirements from the use cases in Activity 5 and
adapting a proven reference architecture designed by the FIWARE community for smart cities.

The main elements depicted in the next diagram are:

e A Context Broker component [6], is at the core of the architecture, keeping a digital twin
representation of the real-world objects and concepts relevant to the specific problem tackled:
Environmental sensors, traffic sensors, noise sensor, bike stations, etc.

e Southbound to the Context Broker, the NGSI IoT Agents, available as part of the FIWARE IDAS
framework, are used for connections to the different sensors or actuators, used for example to detect
available bikes on the stations. They perform the necessary conversions between IoT protocols and
NGSI. In addition, System Adapters developed based on the IDAS Agent library cope with the
connection to the legacy systems of the city as described in the services architecture. FIWARE

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 15 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

component Kurento is able to process the video streams of cameras deployed in the shop floor, which
are helpful to detect potential obstacles or risky situations.

Southbound to the Context Broker, data sources can be serialized in multiple formats (JSON, CSV ,
JSON-LD...) and published through heterogeneous APIs (JSON API, LDES, NGSI-LD).

A combination of open-source components from third party products and advanced data maps for monitoring
processes. A number of FIWARE Data Connectors (Cygnus, Draco, Cosmos, STH Comet, QuantumLeap) are
available as part of FIWARE to facilitate transference of historic context / digital twin information to these

tools.

Transversal to all these layers, a number of FIWARE components support Identity and Access
Management (e.g., Keycloak, Keyrock). They control the flow of data across the different layers.
With regards to the access to the Context Broker, they enforce the policies establishing what users can
update, query or subscribe to changes on context / digital twin data. Note that the flow of data is not
only south to north in the picture. Northbound applications can perform updates on context data,
which in turn will trigger changes in the sensors, actuators or systems that are connected southbound.

Northbound to the Context Broker, there are several tools aimed at supporting real-time processing of
the historical data streams generated as context/digital twin information evolves over time.
Additionally, the NGSI-LDES component creates a scalable interface for data sharing. The
component allows applications to replicate and synchronize with the historic and real-time context of
entities. Example of such an application is the Coverage Index or Registry API, which can be served
by a Context Registry and can be used by a source selection component. NGSI-LDES requires that the
temporal and types of interfaces are available on the Context Broker.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 16 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Green mobility Governance System

2 01) .&

Complex Event Big Data Al Dashboard Advanced
Processing Algorithms Algorithms (grafana, etc) Data Maps

Coverage

Processing Engines index

(Flink, Spark, Tensorflow, Hadoop, ...}

Kurento RT IDAS NGSil Agent Framework

- loT platforms LDES
media stream : IoT System || System System System EERE
processing Agent Adapter Adapter Adapter Adapter

L
Archiving Traffic
data
En |
e

Other information sources Vertical solutions

¥ £ ‘
o™ ’5@ L T
E Bw :\&'ﬂj‘.?_;?i_‘? *

i R)

Deployed loT networks, ®
machines, cameras, robots

Weather
forecast

Gd

¥

Traffic
control

=
-
:
s
¥
=
]
o
%.
x

ldentity & Access Management

(1aMm)
Wiima (PEP) Authforce (PDP)

Document name:

D4.2 GreenMov Reference Architecture and guidelines v2 Page:

17 of 61

Reference:

D4.2 Dissemination: PU Version: 1.0 Status:

Final

2.4 Core components of the reference architecture

2.4.1 Context broker

The context broker integrates information from sensors, systems and other machines in the different use cases

breaking information silos. It allows not only the retrieval of information from heterogeneous sources but also
the querying in time and the geoquerying in spatial dimension. Additionally, it also allows the users to

subscribe to changes or updates and to receive notifications when the conditions are met.

This broker must support following entry points to be compatible with the NGSI-LDES:

the NGSI-LD temporal interface.
the NGSI-LD types interface.

Examples of Context Broker we see fit: Orion-LD + Mintaka, Scorpio, Stellio.

To be able to choose between these brokers, some load tests have been made to compare the brokers
performance depending on the number of entities in the broker.

Examples of Context Broker we see fit: Orion-LD + Mintaka, Scorpio, Stellio.

Orion-LD is an NGSI-LD compliant context broker part of FIWARE. It is developed in C++, and it
runs under Linux. Orion-LD uses MongoDB, a document-oriented database, as a context database.
Orion-LD also implements Temporal Representation of Entities with Timescale a time-series SQL
database. Mintaka is the component used to manage temporal queries.

Scorpio is an NGSI-LD compliant context broker developed by NEC Laboratories Europe and NEC
Technologies India. Scorpio is developed in Java but there are two different versions of Scorpio, one
is built with Spring Boot and another one with Quarkus. Both versions are built with Apache Maven.
Scorpio works with Apache Kafka as message bus and PostgreSQL with PostGisextension to store
context and historic data. Scorpio allows to create distributed and federated deployment of various
context brokers.

Stellio is an NGSI-LD compliant context broker developed by EGM. It is developed in Kotlin with
Spring Boot framework, and it is built with Gradle. Stellio is composed of three main services: search
service, subscription service and API gateway. It uses a Kafka component as message bus and a
TimescaleDB to store context and historic data.

To be able to choose between these brokers, some load tests have been made to compare the brokers

performance depending on the number of entities in the broker.

The deliverable 4.3 contain the advance criteria to make the decision depending on the needs of the use cases.

2.4.2 NGSI-LDES

The NGSI-LDES component acts as a scalable data synchronization/exchange interface that publishes one or

more Linked Data Event Streams (LDES) from NGSI-LD compliant context brokers. LDES defines a
hypermedia-based Web API that provides access to immutable and semantically annotated data subsets

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 18 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

https://github.com/TREEcg/ngsi-ldes

=g

containing the (historical) state of a certain data collection. For example, it can be used to read the latest state
of a bicycle sharing station but also allows to query for previous states of that same station, as reported in the
past.

To allow for efficient and scalable data access, an LDES defines a certain logical data structure that ensures
that historical data records, which will not change any further, are served as immutable resources (in terms of
HTTP caching), lowering the cost for serving historical data and thus improving scalability. Multiple logical
data structures can be implemented for an LDES, (e.g., linked lists, b-trees, skip lists, etc.). The choice is
made at design time and largely depends on the underlying data sources and their querying capabilities. In the
context of GreenMov, a b-tree like hierarchical data structure was chosen, which is supported by the temporal
querying interfaces of NGSI-LD context brokers. Each node in the tree represents aggregated time windows
of a certain granularity (e.g., week, day, hour, etc.). Such design allows the LDES to behave as a virtualized

view over the data that is hosted in a context broker, i.e., the data does not need to be duplicated anywhere
else, and also lowers the cost for historical queries, since historical fragments only need to be request to the
context broker once and be served from cache onward.

In terms of data content, the NGSI-LDES module produces an independent LDES stream for every entity type
that can be found within a NGSI-LD context broker. Each LDES will continuously produce versioned
members (as in LDES/TREE notation) which will contain links to the respective (versioned) entities which are
defined in correspondence to the specific (smart) data model used by the context broker.

Additionally, the NGSI-LDES component leverages the NGSI-LD types of interfaces of a context broker to
automatically generate a compliant DCAT metadata catalog.

NGSI-LDES is available as open source on GitHub [7].
2.4.3 10T Agents

The IoT agents gather information from specific IoT sensors and transfer them into the main components of
the platform. These are identified as potentially usable across the platform depending not only on the existing
sensor but on other that could be included during execution of the project and beyond.

e JoT Agent for JSON [8] - a bridge between HTTP/MQTT messaging (with a JSON payload) and
NGSI/NGSI-LD.

e JoT Agent for LWM2M [9] a bridge between the Lightweight M2M protocol and NGSI/NGSI-LD

e JoT Agent for Ultralight [10] - a bridge between HTTP/MQTT messaging (with an UltraLight2.0
payload) and NGSI/NGSI-LD

e JoT Agent for LoRaWAN [11] - a bridge between the LoRaWAN protocol and NGSI/NGSI-LD
e [oT Agent for Sigfox [12] - a bridge between the Sigfox protocol and NGSI/NGSI-LD

e JoT Agent Library [13] - library for developing your own IoT Agent, almost all the IoT Agents are
using this library to develop their concrete bridge between legacy systems and NGSI/NGSI-LD.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 19 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

https://en.wikipedia.org/wiki/Linked_list
https://en.wikipedia.org/wiki/B-tree#:~:text=In computer science%2C a B,with more than two children.
https://en.wikipedia.org/wiki/Skip_list
https://treecg.github.io/specification/#member

2.5 Persistence components of the reference architecture

2.5.1 Cygnus-LD

The Cygnus-LD [14] Generic Enabler enables the persistence of historical context data through the creation of
data streams and can be injected into multiple data sinks, including many popular databases such as
PostgreSQL, ArcGIS or public Open Data Platform like CKAN. Cygnus is based on Apache Flume.
Potentially required when using Orion-LD because persistence in Scorpio is already available.

e Data management: Cygnus-LD allows you to store and manage Linked Data in a way that is
consistent with the Linked Data principles.

e Data integration: Cygnus-LD provides tools for integrating Linked Data from different sources, such
as databases and web services. This allows you to create a unified view of your data and to link
related information from different sources.

e Data interoperability: Cygnus-LD supports the Linked Data standards and protocols, allowing you to
share data with other systems and applications that use Linked Data. This enables interoperability
between different systems and makes it easier to build applications that use Linked Data.

e Data privacy and security: Cygnus-LD provides tools for managing access to Linked Data, allowing
you to control who can view and modify your data. This helps to ensure the privacy and security of
your data.

2.5.2 Other persistence components

Although there are other persistence components for persistence in the FIWARE framework, Quantum Leap
[15], Cosmos [16], there are not initially used by the use cases and therefore not included here.

2.6 Security components

2.6.1 Keycloak

Keycloak is an open-source identity and access management solution. It helps organizations to secure their
applications and services by providing a single point of access for authentication and authorization. Keycloak
offers features such as user management, multi-factor authentication, and support for social login providers. It
also integrates with other identity providers such as LDAP and Active Directory. Keycloak is written in Java
and is available under the Apache License 2.0.

It has these features:

User management: Keycloak provides a centralized user management system, where you can manage users
and their permissions. This includes features such as user registration, password policies, and account
recovery.

e Multi-factor authentication: Keycloak supports multiple authentication methods, such as OTPs,
biometrics, and security questions. This allows you to set up a secure authentication system for your
applications and services.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 20 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

e Social login: Keycloak integrates with popular social login providers, such as Facebook and Google,
allowing users to log in to your applications using their social media accounts.

e Identity brokering: Keycloak can act as an identity broker, allowing users to log in to your
applications using credentials from other identity providers, such as LDAP or Active Directory.

e Single sign-on (SSO): Keycloak supports SSO, allowing users to log in to multiple applications with a
single set of credentials. This makes it easier for users to access the applications they need, and it
helps to improve security by reducing the number of passwords that users need to remember.

2.6.2 Keyrock

The Keyrock [16] Generic Enabler acts as the Identity Management component and provides secure and
private authentication, basic authorization, and identity federation for applications. It plays a crucial role in
ensuring security within the FIWARE System of Systems architecture. The Keyrock component includes tools
for administrators to manage user life cycle functions. It complements some aspects of the previous Keycloak
component and serves as an alternative in others.

2.6.3 Wilma

Wilma serves as the standard implementation of a PDP due to its complete integration with the FIWARE
ecosystem. It is designed to operate seamlessly with OAuth2 and XACML protocols, the authentication and
authorization standards adopted by FIWARE. Moreover, every GE incorporates this component on top of
their REST APIs, making it widely tested and utilized in diverse scenarios.

2.6.4 Authzforce

Authzforce is the GE that provides with the reference implementation of the Authorization PDP Generic
Enabler (previously known as Access Control GE). As per the GE specification, this implementation offers an
API that enables you to obtain authorization decisions based on authorization policies and requests from
PEPs. The API adheres to the REST architecture style and conforms to XACML v3.0. XACML, which stands
for eXtensible Access Control Markup Language, is an OASIS standard used for authorization policy format
and evaluation logic, as well as for the request/response format for authorization decisions. The XACML
standard defines the terms PDP (Policy Decision Point) and PEP (Policy Enforcement Point). This GE
reference implementation acts as a PDP.

To comply with the XACML architecture, you may require a PEP (Policy Enforcement Point) to safeguard
your application, which is not included in this implementation.

2.7 Other components

2.7.1 Connection with open data portals

This is a feature under discussion in the use cases. Anyhow information about the connector to transfer the
data from the services to open data portals based on CKAN is included.

The CKAN Extension. Publishing and consuming open data is a keystone for the development of applications
and the creation of an innovation ecosystem. CKAN is one of the most extended Open Data publication

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 21 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

platforms and is becoming the de-facto standard for data publication in Europe. Moreover, CKAN is an open-
source platform which means it can be easily adapted and expanded and integrated into multiple use cases.

The CKAN Extension [18] integrates CKAN solution with the FIWARE platform, enabling the right-time
context information served by a FIWARE Context Broker and to be published as a dataset resource, making it
easier to be discovered and consumed as Open Data content. Additionally, this extension allows the
integration with FIWARE Security in order to enrich the access control and enable explicit acceptance of data
terms and conditions, usage accounting, or data monetization.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 22 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

3 Deployment of the platform

The deployment infrastructure must obey to some requirements:
e Be easy to deploy by the technical teams of the pilot sites on their infrastructure.

e Be responsive as the platform deals with near to real time data management and processing and users
needs immediate feedback for decision making.

e Be highly available as the platform deals with near to real time data management and processing and
users need feedback at any time for decision taking.

e Be scalable as more in more data and usages will come in and the platform must stay responsive and
with the right performance over time.

Such concerns are deeply tied to the global architecture of the platform and the components that are
integrated. In this respect, it is very important that the platform and its components adhere totally to the
Reactive Manifesto (See Annex III. Concepts), which defines the core principles that must be followed by any
modern reactive architecture.

Then, it has to be backed by a deployment platform that will bring the ease of deployment, and the tools to
allow for high availability and scalability.

Nowadays, Kubernetes is de-facto standard for such deployments:
e Deployments can be formalized and automatized, especially via the use of Helm charts.
e Integrated support for load balancing.
e Integrated support for horizontal scaling.

e Automatic restart of containers when a node dies or when a container does not respond to health
checks.

e Automatic placement of containers based on their requirements.

Furthermore, it brings another important feature, by offering to progressively roll out changes to a deployed
platform in production, while monitoring application health to ensure all the services are still up for end users.
If something goes wrong, Kubernetes will roll back the changes (whether automatically or manually). This
allows for advanced deployment strategies like Blue-Green deployment (See Blue-Green deployment),
Canary deployments (Set Canary deployment), and so on.

Finally, it is expected a tight integration between the CI/CD tool and the deployment platforms (whether
production, integration, development, ...). There exist tools (like JenkinsX) that permit such a seamless
experience, they will be considered first (as long as well-known tools in this domain, like TravisCI or
Bamboo).

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 23 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

3.1 Installation of the core context broker

3.1.1 Installation of Orion-LD on MongoDB

There is an extensive documentation on how to install Orion-LD on MongoDB. The installation instructions
are available for the base platforms [19]:

e use a prebuilt docker image, or
build Orion-LD from source code:

e Ubuntu 18.04.3 LTS - the Official Distribution

e Ubuntu 20.04.1 LTS

e Ubuntu 22.04 LTS - no official instruction from MongoDb on how to install their DB
Installation of Scorpio on PostgreSQL

The installations instruction [20] recommends its installation based on docker compose, although it can also
be installed based on the source code. The instructions also include a tutorial on how to install PostgreSQL
(version 10).

3.2 Persistence Components

3.2.1 Installation of Cygnus

FIWARE Cygnus is an open-source component of the FIWARE platform for the Internet of Things (IoT). It is
a connector that allows for the storage and management of context information from IoT devices and sensors
in different backends, such as databases, cloud storage systems, and data warehouses. Cygnus acts as a bridge
between the IoT devices and the backend storage systems, enabling seamless and efficient data transfer and
management. By using Cygnus, developers can easily store and manage context information from IoT
devices, enabling the creation of advanced loT applications.

The installation of Cygnus demands a previous analysis of the different types of data sources to be ingested in
the component. A large catalog of them is available including (not exhaustive list). The installation guide is
available in its main page [21].

e Integration with REST interfaces
e Databases

CartoDB
DynamoDB
ElasticSearch
MongoDB
MySQL
Oracle
PostGreSQL

0O 0O O O O O O

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 24 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

e Big data resources

o Kafka
o HDFS

e Other FIWARE components
o Orion

e Geographical systems
o Arcgis
o PostGIS

3.3 Installation of security components

3.3.1 Installation of Keycloak

Like most of the components it can be installed based on containers like dockers and Kubernetes. It requires
the installation of JDK (i.e. OpenJDK) either docker or Kubernetes. and eventually Openshift when using
Kubernetes.

The official guide for the installation of Keycloak can be found in this reference [22].
3.3.2 Installation of Keyrock

In order to be able to run Keyrock, it is needed to have previously installed the following software
components:

e Node.js and Node Packaged Modules. They are usually included within Node.js.
e MySQL

The standalone configuration requires to configure the port for providing service, the connection with the
database and an initial population of the database. It also requires creating the session and encryption
password.

It is also possible to be installed by using a docker image [23].
The official guide for the installation of Keyrock can be found in this reference [24]
3.3.3 Installation of Wilma
Wilma requires to install these elements:
e Node.js >=V8.x.x
e npm >=5.x.x.
It can be installed from the source code or using a docker image.

The official installation guide is found in this reference [25].

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 25 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

3.3.4 Installation of Authzforce

Authzforce is based on Java and therefore needs to get in the environment:
e JRE 11 from OpenJDK
e Tomcat 9.X

It requires a special configuration of Tomcat, additionally other configuration parameters are required for its
successful installation. The official installation guide can be found in this reference [26].

3.4 Configuration of federated scenarios

3.4.1 Types of deployments simple and advanced

Federation of brokers is a feature specially developed in the version 1.6.1 of NGSI-LD standard (Aug.2022).
This version also addresses some other evolution like the concise format, the representation of deleted entities
and attributes in notifications, the temporal evolution and some conventions for using NGSI-LD for actuation
(not only to gather information and answering about it but also to make other systems to act).

Usually, the simple deployments typically are controlled by a single operator that can guarantee consistency.
The size of the system only comprises some hundreds of entities. Also typically are used by a single
application or a small set of applications and it can be handled by a single Context Broker / single database.

However, in order to provide services to a full city this configuration is limited and therefore the advance
deployments has to include the scalability for dealing with thousands or even millions of entities. It needs to
be allowed the interaction of multiple independent operators. Besides this, they can have heterogeneous
sources of overlapping information. In terms of access permission, it has to be ready to require that only some
of the information is shared, and of course there will be many different applications with different access level
permissions. In such deployments it is required that multiple context brokers interact with each other and the
answer to the queries will need to gather information from multiples instances and to recombine globally.

3.4.2 Advanced deployments

NGSI-LD is a standard that enables distributed deployments by supporting multiple context sources. These
sources can include full context brokers, IoT agents, or other entities that partially implement the NGSI-LD
API. The context brokers can register with the context registry to specify the information they can provide.
The context broker then accesses and aggregates the information from the context registry to return it to the
requesting application. Furthermore, context brokers can themselves have other context brokers registered,
allowing for the creation of hierarchical structures that reflect company or geographical structures.

3.4.3 Federated deployments

A federated deployment is a type of distributed deployment that allows applications to access context
information from different sources, each running its own context broker. It is not technically different from
other distributed scenarios, but the key difference is that it operates across administrative boundaries and lacks
central control. In federated scenarios, the primary focus is typically on accessing and aggregating context

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 26 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

sy

information from multiple context brokers, while the management of the information, such as creation,
update, and deletion, is performed locally within each domain.

In order to make compatible data for the same entity there is a new built-in sub attribute (datasetld) which
depending on the source could help to make the difference. Additionally, scopes can help on filtering
information coming from a group of sources.

Query _
Subscribe/ \ Discover
Notify Subscribe/
\ Notify Discovery
Discover
Subscribe/
Broker <oty
\ Discovery

Create Register
Update Que
Delete Subscribé

Notify

3.4.4 Multitenancy

In contrast to a federated scenario, multitenancy involves running multiple services within a single instance of
a context broker. In this setup, each user group is assigned to a specific tenant. The NGSI-LD
implementations (such as Orion-LD, Stellio, Scorpio, etc.) may support multitenancy as an optional feature.
To specify a tenant in an HTTP request, the "NGSILD-Tenant" header is used in the HTTP binding.

The creation of tenants can occur implicitly, for example, when a tenant is first used in a create (entity,
subscription, registration) operation. There are currently no API operations in NGSI-LD for explicitly creating
or deleting tenants. If no tenant is specified, there is always a "default tenant" available. The implementation
of tenants, including how isolation is achieved, is up to the specific implementation. Registrations can be
targeted to a specific tenant, or if not specified, they will default to the "default tenant". If the same context
source/broker needs to be registered for multiple tenants, multiple registrations are required.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 27 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

3.4.5 Distributed operation modes

When multiple brokers are used they can be registered as data sources for others, and several options are
available.

Registration options

Additive O’ ‘O Proxied

/

\
/ \ /
/ /
/ \ /
/ \ /
\

PV

Inclusive Exclusive
Auxiliary Redirect

Additive Registrations

A Context Broker is permitted to hold context data about the Entities and Attributes locally itself, and also
obtain data from (possibly multiple) external sources.

Inclusive

An inclusive Context Source Registration specifies that the Context Broker considers all registered Context
Sources as equals and will distribute operations to those Context Sources even if relevant context data is
available directly within the Context Broker itself (in which case, all results will be integrated in the final
response). This is the default mode of operation.

Auxiliary

An auxiliary Context Source Registration never overrides data held directly within a Context Broker.
Auxiliary distributed operations are limited to context information consumption operations. Context data from
auxiliary context sources is only included if it is supplementary to the context data otherwise available to the
Context Broker.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 28 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

Proxied Registrations

A Context Broker is not permitted to hold context data about the Entities and Attributes locally itself. All
context data is obtained from the external registered sources.

Exclusive

An exclusive Context Source Registration specifies that all of the registered context data is held in a single
location external to the Context Broker. The Context Broker itself holds no data locally about the registered
Attributes and no overlapping proxied Context Source Registrations shall be supported for the same
combination of registered Attributes on the Entity. An exclusive registration must be fully specified. It always
relates to specific Attributes found on a single Entity.

Redirect

A redirect Context Source Registration also specifies that the registered context data is held in a location
external to the Context Broker, but potentially multiple distinct redirect registrations can apply at the same
time.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 29 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

4 Operation of the platform

4.1 Operational aspects

From the user requirements emerged some concerns related to the operational aspects of the platform in
general, and to cybersecurity more specifically:

e How to trust Open-Source software that is used and integrated into the platform?
e How to deliver an operational, scalable and reactive platform?

e How to ensure the platform stays safe and secure?

e How to monitor the correct behavior of the platform?

This section is organized as follows: Subsection 4.2. describes the quality and security processes to apply
during the development, integration and deployment of components inside the FIWARE platform. Subsection
4.3 describes the requirements for a deployment infrastructure that can handle current and future needs of
users. Subsection 4.4 describes the security measures to apply to a production environment in operation.
Subsection 4.5 describes the security measures to apply specifically to the communication with the legacy
systems used by the pilot sites. Subsection 4.6 describes the operation support tools to deploy in order to
ensure a correct monitoring of the platform.

4.2 Secure code, from design to delivery

The first concern relates to the trust and confidence that a user may have in a large platform composed from
the development and integration of many Open-Source software and libraries.

This is a legitimate concern, and the platform has to define and deploy all the necessary processes and tools in
order to ensure the maximum level of security in the software delivery chain.

Thus, we are proposing here a set of security practices to be applied from the design of a new piece of
software to its delivery in production.

A new term, Continuous Hacking, started to emerge recently to design this whole process of ensuring the
security chain in software development and delivery. It is associated with the STRIDE acronym: Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of Service, Escalation. The techniques, processes
and tools described below follow and address these security topics.

4.3 Secure by design

The first step in this process is to apply the “Secure by design” principles to all the software that is specifically
developed in the scope of the GreenMov project. Even considering that most of the software is already
available as part of the FIWARE catalog. But the specific requirements of each pilot will comprise some
development.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 30 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

It means that the security is considered from the design phase of the application and checked continuously via
unit tests focused on security. For instance, if the application receives some user input, it implies to sanitize
the data and remove any potential malicious characters.

For this, a minimal and recommended practice is to follow the Open Web Application Security Project
(OWASP) top 10 most critical web applications security risks that directly apply to the phase of code design.

To help in these tasks, it would be assessed if it would be necessary to proceed with a static analysis security
testing (SAST). A very valuable starting point is the community list of such existing tools that is maintained
by the OWASP. What’s more, it is expected that the selected tool cover at least the following topics:

e Support a rich variety of languages, and at least all the languages used in the components of the
platform.

e Detect the security vulnerabilities

e Integrate seamlessly in a CI/CD chain

4.4 Dependencies scanning

Nowadays, a typical application or microservice in production has 80% of its source code coming from
integrated third-party libraries (which in turn have their own dependencies and so on and so forth). This
general principle also applies to the components of the FIWARE catalog.

It is thus very important to integrate a dependency scanning process in order to detect as soon as possible a
security vulnerability introduced by one of these third-party libraries. What’s more, to be effective, it has to be
integrated into the whole software development life cycle: new source code added, deployment pipeline,
external contributions received via a pull request, ...

As of now, some tools have been identified for a careful evaluation (but larger research will be conducted):
e Dependabot, a service provided by GitHub.
o Integrated security alerts in GitHub projects, as recently made available by GitHub.
e Snyk.

To be valuable, the security scanning of dependencies has to be part of an automated and continuous process,
with automatic fixes (or suggestions for fixes at least, via pull request for instance) as much as possible. Thus,
it has to be run automatically on a regular basis (for instance, on each pull request, on each commit on the
main branches, ...) and to be followed by immediate actions when this is possible (for instance, a deployment
of the platform in production if a critical vulnerability has just been fixed).

4.5 DevSecOps

DevSecOps is an extension of the now classical DevOps paradigm. This term is used to emphasize that
security must be a core part of the software delivery chain and thus must be deeply integrated into the
continuous integration and continuous deployment pipelines.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 31 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

For the continuous integration pipeline, it implies at least to cover the following topics:
e Run static analysis security testing.
e Run security focused unit tests.
e Scan for the security of dependencies.
e Secure the Docker containers.

The first three points being covered above, the following will specifically address the Docker containers
security. GreenMov developers will assess if such devsecops would be required for the current integration.

Docker security

The Docker containers security is a large topic by itself. Docker technology is something relatively new, but
very largely widespread. Unfortunately, the security aspect of the containers has not been really addressed
from the beginning and there is now a large surface left for attacks. A lot has been done in the past months and
there are now mature tools and practices to help in dealing with security in a containerized world. This
security field is improving and extending every day, as emphasized for instance by the recent announcement
of a partnership between Snyk and Docker to improve the overall security of Docker containers and integrate
this concern at the heart of a software delivery chain.

The Docker containers security can be roughly divided into:
e Container creation best practices

A lot of practices have emerged recently in this field. They range from best practices at the creation time of a
container, to the need to run Docker containers as a non-root user.

These practices will be thoroughly studied and integrated when wiring up the Docker containers composing
the GreenMov platform.

Complementary to this, tools that help in checking and enforcing these best practices will be used when it is
possible to automate the checking (for instance, a tool like Docker Bench Security
(https://github.com/docker/docker-bench-security) may be of great value).

Also, new emerging techniques like Buildpacks (https://buildpacks.io/) from the Cloud Native Computing
Foundation will be considered seriously. Indeed, they provide a higher level of abstraction for building apps
compared to Dockerfiles and thus bring a new experience into bridging the gap between the source and the

Docker packaging of an application and applying best of breed practices in modern container standards. It also
ensures that applications meet security and compliance requirements without developer intervention.

e Container security scanning

As of now, some tools have been identified but larger research will be conducted before a final choice: Clair
and MicroScanner.

e Image signing

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 32 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

https://github.com/docker/docker-bench-security
https://buildpacks.io/

=g

In order to bring confidence in the images used, Docker provides tools and practices to apply and check image
signing, as it is for instance already done in packages distributed on Linux distributions. Such image signing
will be applied to each image produced by the platform.

For the continuous deployment pipeline, it implies at least to cover the following topics:

e Dynamic analysis security testing (DAST)

In the same way that a static security analysis is performed on the source code during the continuous
integration phase, a dynamic security analysis is potentially an option to be adopted at GreenMov
developments during the continuous deployment one.

This time, the analysis is performed on the running platform, typically deployed in a dedicated environment,
but with a security configuration that has to be the same as the production environment.

For this specific task, different existing Open-Source tools will be evaluated, and a choice will be made for a
proven mature solution. Once again, the OWASP site lists some mature solutions and a tool like Zaproxy, also
known as OWASP ZAP, has already been identified as a valid candidate.

e Penetration testing

Another very valuable and critical kind of testing is penetration testing. This is in particular a critical point to
be addressed for a smart city management platform that may be subject to cyberattacks, due to the potentially
sensitive nature of the underlying infrastructure.

This is a specific field that is well covered and understood. There already exists tools and procedures that will
be applied on the platform to be deployed. Security assessment tools, like the aforementioned Zaproxy, can
also be used to help and ensure the platform meets the expected security requirements.

e Chaos engineering

Chaos engineering is quite a new field, not directly related to the platform security, but more to the resilience
of the platform.

It has gained a lot of popularity some years ago when Netflix released the now famous Chaos Monkey project.
Aimed at running against a production platform, it tries to “inject” some abnormal behavior inside the
platform (network outage, application failures, ...) in the objective to test the application resilience against a
bunch of different external or internal factors. Due to the potential criticality of the software that is going to be
deployed on the GreenMov platform, this is an aspect to be considered.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 33 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

5 Data Architecture

This section has the same contents as the equivalent section in deliverable 4.1 because there has not been
relevant changes during the period between release of the deliverable 4.1 and 4.2. It could be omitted but it is
included here just for making the deliverable 4.2 more self-contained.

5.1 Data Storage architecture and technical format

As long as NGSI-LD is the chosen common standard within GreenMov services and components for
interchanging information between the main systems (but for the sensors) the common standard for document
sharing and eventually for some of the data storage will be JSON (and specifically JSON-LD).

T

Bus
* Location

* No. passengers
* Driver

* License plate

{
“id”: "ngsi-ld:BUS:001”,
“type”: “Bus”

“location”: [215, 33.4],
“driver”: "ngsi-ld:DRIVER:002",
“licensePlate”: “4536KVM”

}

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 34 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

The entity' could be represented in JSON payload this way.

The information will be split into elements named entities that can be a single JSON payload. the payload is a
series of keywords (attributes) and a attached value that can be a single value (e.g. string , data-time, number)
or complex values like an array or a more complex object. These entities have a unique attribute, the identifier
or ‘id’, that allows to reference them uniquely, and another attribute, the type, which determines their class.

Entities belonging to the same class can have different internal structures because do not need to have proper
values for all the attributes These elements can include references to other elements store across the different
systems.

5.2 Basic data classes / entities

Although the different pilots would share the same technical architecture there would be quite limitation if
they do not share the data structures. Thus, in activity 2 a set of shared data models have been defined so
every entity can be shared between the different pilots.

The full list of entities is defined in deliverable 2.2, section chapter 4 Data Models for GreenMov use cases.
Here is just the plain list of those data entities created explicitly for GreenMov project.

e AirQualityForecast. A forecast of air quality conditions valid during a period

e BicycleParkingStation. Bicycle Parking Station Schema meeting Passenger Transport Hubs AP
Schema specification

e BicycleParkingStationForecast. Bicycle Parking Station Schema meeting Passenger Transport Hubs

AP Schema specification

e NoiseLevelObserved. An observation of those acoustic parameters that estimate noise pressure levels
at a certain place and time.

e NoisePollutionForecast. Noise Pollution forecast stores the expectation about noise pollution based on

some input elements and the noise elements present.

e ResourceReport. Resource Report Schema meeting Passenger Transport Hubs AP Schema
specification. A summary of resources connected to mobility services based on defined filters by the
person requesting the report.

e ResourceReportForecast. Resource Report Forecast Schema meeting Passenger Transport Hubs AP

Schema specification. A summary of the expectations of the resources connected to mobility services
based on defined filters by the person requesting the report.

! This entity is described here only for explanatory purposes, and it does not correspond with any of the real
ones in the use cases. worth to be noted that the value for the attribute driver can be the pointer to a different
entity of the type of drive with their own attributes, allowing to create relationships between the entities stored
in the context broker

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 35 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

https://github.com/smart-data-models/dataModel.Environment/tree/master/AirQualityForecast
https://github.com/smart-data-models/dataModel.OSLO/tree/master/BicycleParkingStation
https://github.com/smart-data-models/dataModel.OSLO/tree/master/BicycleParkingStationForecast
https://github.com/smart-data-models/dataModel.Environment/blob/master/NoiseLevelObserved/README.md
https://github.com/smart-data-models/dataModel.Environment/blob/master/NoisePollutionForecast/README.md
https://github.com/smart-data-models/dataModel.Environment/blob/master/NoisePollutionForecast/README.md
https://github.com/smart-data-models/dataModel.Environment/blob/master/NoisePollutionForecast/README.md
https://github.com/smart-data-models/dataModel.OSLO/blob/master/ResourceReport/README.md
https://github.com/smart-data-models/dataModel.OSLO/tree/master/ResourceReportForecast

sy

e TrafficEnvironmentlmpact. Environmental Impact of traffic based on the vehicles traffic and their

emission characteristics

e TrafficEnvironmentlmpactForecast. Environmental Impact of traffic based on the vehicles traffic
expectations and their emission characteristics

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 36 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

https://github.com/smart-data-models/dataModel.Environment/tree/master/TrafficEnvironmentImpact
https://github.com/smart-data-models/dataModel.Environment/tree/master/TrafficEnvironmentImpactForecast

6 Conclusions

This document provides general guidance for designing and deploying the technical reference architecture of
the GreenMov Project use cases. The reference architecture outlined here will enable the use cases to meet
current project needs and adapt to future requirements. A more in-depth analysis of system scalability is
included in deliverable 4.3.

The reference architecture offers a comprehensive description of the components, based on the existing
reference architecture for smart cities by the FIWARE community, with modifications to fit the GreenMov
use cases. The document also includes instructions for installation, with links to more information about each
component in different sections.

It's worth mentioning that some components have been added, such as the LDES integration, while others are
not currently necessary for the use cases but may be useful in the future. This component could result in a
candidate to a generic enabler, as new component, for the FIWARE community.

Further guidance is provided in chapters 3 and 4 on how to deploy and operate the components, with a
separate sub-chapter dedicated to security. Some deployment details are located in the annexes to keep this
chapter brief. The different options for deploying a network of brokers to retrieve information are also
discussed.

The data architecture is only briefly outlined, as the details about the entities containing information are part
of Activity 2's scope, and only the new entities created for the project are listed. As mentioned previously, one
outcome of the project may result in the creation of a specific generic enabler for sustainable mobility. A
generic enabler is an open-source software component validated by the FIWARE Foundation as part of the
global framework. Consequently, the requirements for becoming such a component are also included in the
annexes.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 37 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

/ References

[1] https://github.com/telefonicaid/fiware-orion

[2] https://github.com/FIWARE/context.Orion-LD

[3] https://github.com/ScorpioBroker/ScorpioBroker

[4] [1] https://github.com/stellio-hub/stellio-context-broker
[5]

[6]

5] [1] https://www.etsi.org/committee/cim

6| According to Gartner, referenced by https://www.linkedin.com/pulse/what-context-brokers-
alvaro-martin/ A context broker is a service that is designed to gather reachable context data of a
variety of types, sources and velocity. It then applies conditioning, integration, rules and analytics
to derive the reduced prepared context data, actionable at a point of business decision by a system
or a human

https://github.com/TREEcg/ngsi-ldes

https://github.com/telefonicaid/iotagent-json

]
]

9] https://github.com/telefonicaid/lightweightm2m-iotagent
0

https://github.com/telefonicaid/iotagent-ul

https://github.com/Atos-Research-and-Innovation/loTagent-LoRaWAN

https://github.com/telefonicaid/sigfox-iotagent

https://github.com/telefonicaid/iotagent-node-lib

Thttps://quantumleap.readthedocs.io/en/latest/

https://github.com/ging/fiware-cosmos

https://fiware-idm.readthedocs.io/en/latest/

https://github.com/conwetlab/FIWARE-CKAN-Extensions

https://github.com/FIWARE/context.Orion-LD/blob/develop/doc/manuals-1d/installation-
guide.md

]
]
]
]
14] https://github.com/telefonicaid/fiware-cygnus
]
]
]
]
]

https://scorpio.readthedocs.io/ /downloads/en/stable/pdf/
https://fiware-cygnus.readthedocs.io/en/latest/cygnus-ngsi-ld/quick _start guide.html

[20]

[21]

[22] https://www.keycloak.org/docs/16.1/server_installation/

[23] https://github.com/ging/fiware-idm/tree/master/extras/docker
[24]

https://fiware-
idm.readthedocs.io/en/latest/installation_and administration guide/installation/index.html

[25] https://fiware-pep-proxy.readthedocs.io/en/latest/
[26] https://authzforce-ce-fiware.readthedocs.io/en/latest/InstallationAnd AdministrationGuide.html

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 38 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

https://www.etsi.org/committee/cim
https://www.linkedin.com/pulse/what-context-brokers-alvaro-martin/
https://www.linkedin.com/pulse/what-context-brokers-alvaro-martin/
https://github.com/TREEcg/ngsi-ldes
https://github.com/telefonicaid/iotagent-json
https://github.com/telefonicaid/lightweightm2m-iotagent
https://github.com/telefonicaid/iotagent-ul
https://github.com/Atos-Research-and-Innovation/IoTagent-LoRaWAN
https://github.com/telefonicaid/sigfox-iotagent
https://github.com/telefonicaid/iotagent-node-lib
https://github.com/telefonicaid/fiware-cygnus
https://quantumleap.readthedocs.io/en/latest/
https://github.com/ging/fiware-cosmos
https://github.com/conwetlab/FIWARE-CKAN-Extensions

sy

[27] https://fiware-requirements.readthedocs.io/en/latest/
[28] https://fiware-requirements.readthedocs.io/en/latest/development/index.html#documentation
[29] https://readthedocs.org/
[30] https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet
[31] https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst
[32] https://bestpractices.coreinfrastructure.org/en/signup
[33] https://openssf.org/
[34] https://github.com/OAI/OpenAPI-Specification
[35] https://github.com/FIWARE-Ops/marinera
[36] https:/fiwaretourguide.readthedocs.io/en/latest/security/introduction/
Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 39 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

https://fiwaretourguide.readthedocs.io/en/latest/security/introduction/

=g

Annex |. Requirements for a generic enabler

The official site for the complete list of requirements and the process to achieve it is available at the FIWARE
site [27]. Main ones are summarized in the coming sections.

Licensing and open SSF Best practices signature

Every Generic Enabler MUST comply with the Licensing and IPR Management requirements. Summarizing.

The source code of the product MUST be licensed under one of the well-recognized open source
licenses approved by the Open Source Initiative.

The open-source license under which source code of the product is licensed MUST be clearly
mentioned in a first-level section of the README.md file included in the main GitHub repository.

When using a copyleft open-source license, a specific explanatory paragraph of legal opinion MUST
be added in the section where the open-source license is mentioned

The legal opinion paragraph above SHOULD be accompanying the text describing the adopted open-
source license in the headers of all source code files for the product.

Every enabler MUST be open to third party contributions. All offered contributions MUST be
reviewed within a "reasonable" time frame.

There MUST be a document (CONTRIBUTING.md guidelines) clearly describing the terms under
which the IPR of contributions to the source code of the product will be managed. Such document
MUST be made accessible in (or map to) a first-level section of the README.md file included in the
associated GitHub repositories.

The CONTRIBUTING.md guidelines MUST include the template of the Contribution License
Agreement for individuals and entities contributing code to the component. As a reference for
producing these templates, the following templates derived from the Harmony Agreements project are
provided:

o Individual CLA
o Entity CLA

When using a copyleft open-source license, IPR Management rules for contributions MUST include
clauses as follows:

There should be at least one organization which can exercise IPRs on the whole software.
There is a commitment to transfer to the FIWARE Foundation the IPRs on the whole
software in case that the software is no longer supported by the organization(s) that currently
own(s) IPR on the whole software.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 40 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

https://fiware-requirements.readthedocs.io/en/latest/GE_Requirements/#licensing-and-ipr-management
https://opensource.org/licenses/alphabetical
https://opensource.org/licenses/alphabetical
https://fiware.github.io/contribution-requirements/individual-cla.pdf
https://fiware.github.io/contribution-requirements/entity-cla.pdf

=g

General requirements

A FIWARE Generic Enabler MUST fit well in the architecture of a “Powered by FIWARE” solution:

e Integrate well with architectures where context management is cornerstone and addressed using
FIWARE NGSI (currently FIWARE NGSIv2, compliant with ETSI NGSI-LD in the future).

e Be able to fit within one of the defined FIWARE chapters.
Code control tool requirements and public backlog

GitHub and GitHub Issue tracking MUST be used.

Documentation requirements

A generic enabler to be accepted needs to have accurate, current Documentation MUST be available on Read
the Docs and as GitHub content. To guarantee that documentation is of high quality, development related
documents MUST be peer-reviewed, and QA verified. See Documentation Guidelines [28] for the best
documentation practices. Should you want to benefit from automatic documentation generation systems,
namely, Read the Docs [29], you MUST use an approved markup notation:

e Markdown [30] is preferred for simple documents.

e Restructuredtext [31] is an acceptable alternative for complex documentation.

Development requirements

Every Generic Enabler must sign-up to the OpenSSF Best Practices Badge Program [32] and display the
badge.

The Open-Source Security Foundation (OpenSSF) [33] Best Practices badge is a way for Free/Libre and Open
Source Software (FLOSS) projects to show that they follow best practices. Projects can voluntarily self-
certify, at no cost, by using this web application to explain how they follow each best practice. API
Specifications MUST be provided. Preferred format is OpenAPI1, a.k.a. Swagger, format.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 41 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Annex ll. An example of configuration

Further information can be found in the repository of Marinera [35]

How to setup

When following all described steps, the resulting cluster will be a fully working copy of the Kubernetes
Clusters, operated by the FIWARE Foundation. If a cluster is already available, you can skip the steps that are
already fulfilled. Be aware that this might require changes to the following steps, depending on the degree of
deviation from the proposed setup.

1. Prepare AWS account

Install OpenShift cluster

Install certificates

Install ArgoCD

Prepare ArgoCD for namespaced deployments

Deploy namespaces

Deploy bitnami/sealed-secrets

A e A

Create secrets

Deploy MongoDB

10. Deploy Orion-LD

< For a better understanding of the process, all application-deployments(starting at step 6.) are executed
through the ArgoCD-UI. However, all of them also can be done through the argocd-cli. See the cli-installation
documentation for that.

1. Prepare AWS account

In order to use the OpenShift installers, provided by RedHat, an AWS account is required:
https://aws.amazon.comThe account needs to be prepared, following the steps described in OpenShift -
configure AWS account.

2. Install OpenShift cluster

The process of creating an OpenShift cluster at AWS is described in the OpenShift documentation:
https://docs.openshift.com/container-platform/4.7/installing/installing_aws/installing-aws-
default.html#installing-aws-defaultChoose the right method for the used operating system and carefully
follow the instructions.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 42 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

https://github.com/FIWARE-Ops/fiware-gitops#1-prepare-aws-account
https://github.com/FIWARE-Ops/fiware-gitops#2-install-openshift-cluster
https://github.com/FIWARE-Ops/fiware-gitops#3-install-certificates
https://github.com/FIWARE-Ops/fiware-gitops#4-install-argocd
https://github.com/FIWARE-Ops/fiware-gitops#5-prepare-argocd-for-namespaced-deployments
https://github.com/FIWARE-Ops/fiware-gitops#6-deploy-namespaces
https://github.com/FIWARE-Ops/fiware-gitops#7-deploy-bitnamisealed-secretshttpsgithubcombitnami-labssealed-secrets
https://github.com/FIWARE-Ops/fiware-gitops#8-create-secrets
https://github.com/FIWARE-Ops/fiware-gitops#9-deploy-mongodb
https://github.com/FIWARE-Ops/fiware-gitops#10-deploy-orion-ld

=g

3. Install certificates

In order to have proper certificates available for the cluster, we are using Let's encrypt to generate our cluster
certificates.

1. The following method requires an existing connection to the OpenShift cluster. If you followed the

previous steps, this should already exist. If not, install the OpenShift-client and login to the cluster as
described in theOpenShift-CLI documentation. Check the connection via oc whoami --show-server, the url
should match with the cluster you want to use.

. The following steps describe certificate generation for AWS installations. For other cloud-providers,

check the options in the acme.sh repo&documentation
Clone the acme.sh github-repo
cd$HOME ¢git clone https://github.com/acmesh-official/acme.sh

Setup AWS credentials

The acme.sh client requires access to AWS Route53. Create and (locally) store your credentials following the
documentation. Create environment variables to be used by the client via:

export AWS_ACCESS KEY ID=<KEY ID OBTAINED FROM AWS>export
AWS_SECRET ACCESS_KEY=<SECRET OBTAINED FROM AWS>

Obtain certificates

export information from the cluster, to be used by the acme-clientexport LE_API=$(oc whoami --show-
server | cut -f2 -d "' cut -f 3 -d /| sed 's/-api././")export LE. WILDCARD=$(oc get ingresscontroller default -n
openshift-ingress-operator -0 jsonpath="{.status.domain}")# run acme-client for
aws$ {HOME}/acme.sh/acme.sh --issue -d ${LE API} -d *.${LE WILDCARD} --dns dns aws #export
CERTDIR=$HOME/certificates mkdir -p ${CERTDIR}${HOME}/acme.sh/acme.sh --install-cert -d
${LE_API} -d *.${LE_WILDCARD} --cert-file ${CERTDIR}/cert.pem --key-file ${CERTDIR }/key.pem --
fullchain-file $ {CERTDIR }/fullchain.pem --ca-file $ {CERTDIR }/ca.cer

Create the secrets

create secret for default ingress-controller oc create secret tls router-certs --
cert=$ { CERTDIR}/fullchain.pem --key=${CERTDIR}/key.pem -n openshift-ingress # create secret for the
api-server oc create secret tls api-certs --cert=$ { CERTDIR }/fullchain.pem --key=${CERTDIR}/key.pem -n
openshift-config

Patch ingress-controller and api-server

patch ingress controller oc patch ingresscontroller default -n openshift-ingress-operator --type=merge --
patch="{"spec": { "defaultCertificate": { "name": "router-certs" }}}'# patch api-server oc patch apiserver
cluster --type merge --patch="{\"spec\": {\"servingCerts\": {\"namedCertificates\": [{ \"names\": [
\"$LE API\"], \"servingCertificate\": {\"name\": \"api-certs\" }}]}}}"

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 43 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

Update kubeconfig

The kubeconfig, generated in the installation process of OpenShift, contains a CA for the self-signed
certificate generated by OpenShift. This will result in certificate errors when connecting the cluster. Since the
Let's encrypt certificate is already trusted, we can remove the CA and use the already installed certs. The
kubeconfig is located in the folder created during the cluster setup a look similar to:

vi <INSTALLATION_ FOLDER>/auth/kubeconfi apiVersion: vl clusters: - cluster: certificate-authority-data:
<BASE 64 ENCODED_ CA> server: https://api.fiware-dev-aws.fiware.dev:6443 name: api-fiware-dev-aws-
fiware-dev:6443

The certificate-authority-data entry can simply be removed.
Verify success

check api-server certificate curl -X GET --silent -vvI $(oc whoami --show-server)2>&1| grep issuer # check
ingress-controller curl -X GET --silent -vvI https://$(oc get routes console -n openshift-console -o json | jq -r
".spec.host')2>&1| grep issuer # both requests should result in something like:* issuer: C=US; O=Let's
Encrypt; CN=R3

A more detailed explanation of the process can be found at the RedHat Blog. Be aware that the described
process does not automatically renew the certificates (yet).

4. Install ArgoCD

The only component that needs to be directly installed to the cluster is ArgoCD.
Create namespace
In order to separate concerns inside the cluster, we create a namespace/project for ArgoCD to live in:

namespace creation via kubectl, alternatively “oc new-project argocd' would have the same effect kubectl
create namespace argocd

Install ArgoCD operator

In order to install ArgoCD, OpenShift comes with a Community Operator for ArgoCD. To install it, go to the
OpenShift console(https://$(oc get routes console -n openshift-console -0 json | jq -r ".spec.host')) and navigate
to the OperatorHub:

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 44 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

RedHat
it a4 O @ L min=
You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others ta log in.
Project argo-cd =
OperatorHub
Discover Gperator d fed Hat p curated by Red Hat. You can purchase commercial software through fed H tplace 07, You can install Gperators on your clusters to provide optional add-ons and shared
sarvices to your o ator capabil appaar in the Developer Catalog providing a self-servi
| All ltems
AlfMachine Learning
Argo 2items

‘Applicaticn Runtime

Big Data
Cloud Provider
Database % community B Community
Developer Toals ’
Argo CD Devops-in-a-bex

Argo CD s a declar Perficient’s DevSecOps Manager

integration & Delivery
continuous delivery For Kubernetes Applications
Logging & Tracing Kubernetes.

Modernization & Migratio

Source
() Red Hat (0)

[Certified (0)

Search for ArgoCD and follow the installation instructions. Use the "A specific namespace of the cluster"
option and choose the namespace created in the previous step("argocd").

= A O @ kube:admin =
You are loge orary administra 1. Updat 1 to allow others talog in
0 Hub » Operator Instalation
Install Operator
Update channel * & 2 ArgoCD
aeha Provided APls
Installation mode *
@ Application B ApplicationSet

O Allnamespaces on the cluster (default)

® A specific namespace on the cluster

Installed Namespace *

oad
@ argo-cd - 1 AppProject (&3 Argo CDExport

Networking

Update approval *

® Automatic

Manual
D ArgocD
— AP

Wait for the operator to be installed.
Deploy an instance of ArgoCD

To have a working instance of ArgoCD, we need to instruct the Operator to install one. A definition of our
ArgoCD object can be found in the repo under argocd.yaml. Deploy it via:

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 45 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

kubectl apply -f argocd.yaml -n argocd

After a couple of seconds(probably less than 60), ArgoCD should be available at kubectl get routes -n argocd -
o json | jq -r ".items[0].spec.host'

T Aopiications APPLICATIONS

T Fers tems per page: 10+
[© unknewn 0 4 fiware-secret @ sesled-secrats
0 @ synced) Project. f Project. default
Labek abels
O © outofsyne 0 W Healthy @ Synced Status ® Healthy @ Synced

Reposfto.. hps://github.comyFIWARE-Ops/fiwareg eposi

0 © unknawn

[© Progressing

0
[0 O suspended 0
:
0
0

[# Healthy
[% Degraded

[@ Missing

5. Prepare ArgoCD for namespaced deployments

Due to permission restrictions, we need to setup ArgoCD with enough permissions to handle cluster wide
deployments.

1. Install the ArgoCD-Client
2. Login with the client:
argocd login --sso $(kubectl get routes -n argocd -o json | jq -r ".items[0].spec.host')
3. Show available clusters
argocd cluster add
4. Add the cluster 'letsencrypt/<CLUSTER ADDRESS>/system:admin
argocd cluster add letsencrypt/<CLUSTER ADDRESS>/system:admin
5. Verify the cluster was added

argocd cluster list # result should look similar to SERVER NAME VERSION STATUS https://api.fiware-
dev-aws.fiware.dev:6443 letsencrypt/api-fiware-dev-aws-fiware-dev:6443/system:admin 1.22 Successful
https://kubernetes.default.svc (1 namespaces) in-cluster Unknown

Alternative:

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 46 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

If you want to use the in-cluster api via 'https://kubernetes.default.svc', the operator-subscription can be
configured to allow namespaced-installations cluster-wide permissions:

kubectl edit subscriptions -n argocd

L in case you have multiple subscriptions inside the argocd namespace, make sure to edit the correct one.

apiVersion: vlitems: - apiVersion: operators.coreos.com/vlalphalkind: Subscriptionmetadata: ...name:
argocd-operatornamespace: argocd...spec: channel: alpha## add this configconfig: env: - name:
ARGOCD_CLUSTER CONFIG NAMESPACESvalue: argocd##installPlanApproval: ~ Automaticname:
argocd-operatorsource: community-operatorssourceNamespace: openshift-marketplacestartingCSV: argocd-
operator.v(0.2.0

With this configuration, the operator considers the namespace argocdas one of argoCD's cluster-wide
installation namespaces and (within a couple of seconds) upgrades the in-cluster-cluster to handle all
namespaces:

Settings Cluster | https://kubernetes.default.sve

SERVER https://kubernetes default.sve
CREDENTIALS TYPE Token/Basic Auth
NAME in-cluster

NAMESPACES All namespaces

6. Deploy namespaces

Since we want to properly separate the workloads in our cluster, we need to manage namespaces. Following
git-ops, we will put the namespace-definitions into a repository and let ArgoCD create them for us.

+ The following documentation uses the Ul to deploy the applications. The same can be achieved via the
argocd-cli.

1. Login to ArgoCD
Open kubectl get routes -n argocd -o json | jq -r ".items[0].spec.host' in the browser

2. Click on "NEW APP"

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 47 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Applications

+ NEW APP = SYNC APPS Q Search applications... @

Y Fll TERS
Figure 21: Argo. Creation of new app

3. Fill out the form

EDIT AS YAML

GENERAL

Application Name

Project

SYNC POLICY

Manual ~

SYNC OPTIONS

[0 skie screma vauparion [autocreate nameseace

[Prune Last [PPy ouT OF SYNG ONLY
PRUNE PROPAGATION POLICY: foreground v

[remace &
[rerry

SOURCE

Repository URL

Revision

Figure 25: Argo. Configuration of new app

General:

-> Application name: namespaces

-> Project: default

-> Sync Policy: automatic

Source:

-> Repository URL: https://github.com/FIWARE-Ops/fiware-gitops
-> Path: aws/sealed-secrets Destination:

-> Cluster URL: -- use the URL of the cluster added via argocd-cli

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 48 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Click create and wait until its running:

Applications namespaces

24l © APP DETAILS B APP DIFF = SYNC @ SYNC STATUS ‘D HISTORY AND ROLLBACK © DELETE C' REFRESH ~

APP HEALTH CURRENT SYNC STATUS ("morE) LAST SYNC RESULT ("MORE)

¥ Healthy @ Synced To HEAD (58¢296) @ Sync OK To 58296

Succeeded a few seconds ago (Tue Feb 22 2022 13:50:39 GMT+0100)

Author Stefan Wiedemann <wistefan@googlemail coms -

i @ i .
Comment update namespaces Author Stefan Wiedemann <wistefan@googlemail.com>

CGomment update namespaces

Y FiTERS

NAME - -
i fiware H

“NamMe Ll e H
ns S
| 7| namespaces H | afew seconds |
o . e
o= ., 771 sealed-secrets .
— [

7. Deploy bitnami/sealed-secrets

Using GitOps, means every deployed resource is represented in a git-repository. While this is not a problem
for most resources, secrets need to be handled differently. We use the bitnami/sealed-secrets project for that. It
uses asymmetric cryptography for creating secrets and only decrypt them inside the cluster. The sealed-secrets
controller will be the first application deployed using ArgoCD. Since we want to use the Helm-Charts and
keep the values inside our git-repository, we get the problem of ArgoCD only supporting values-files inside
the same repository as the chart(as of now, there is an open PR to add that functionality -> PR#8322). In
order to workaround that shortcomming, we are using "wrapper charts". A wrapper-chart does consist of a

Chart.yaml with a dependency to the actual chart. Besides that, we have a values.yaml with our specific
overrides. See the sealed-secrets folder as an example.

1. Click on "NEW APP"

Applications

+ NEWAPP | & SYNC APPS Q (7] ()

Y cnTeEne

2. Fill out the form

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 49 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

https://argo-cd.readthedocs.io/en/stable/user-guide/helm/#values-files
https://argo-cd.readthedocs.io/en/stable/user-guide/helm/#values-files
https://helm.sh/docs/chart_template_guide/values_files/

—
g (canceL) b

EDIT AS YAML

GENERAL

Application Name

Project

SYNC POLICY

Manual ~

SYNC OPTIONS

[] skie scwema vaioamion [auro-creare nawesace

(] prume Last [PPy out oF smc oney
PRUNE FROPAGATION POLICY: foreground ~

O reresce &
D RETRY

SOURCE

Repository URL
Gt~

Figure 37: Argo. Creation of new app

General:

-> Application name: sealed-secrets

-> Project: default

-> Sync Policy: automatic

Source:

-> Repository URL: https://github.com/FIWARE-Ops/fiware-gitops
-> Path: aws/sealed-secrets Destination:

-> Cluster URL: -- use the URL of the cluster added via argocd-cli

-> Namespace: sealed-secrets Helm: You can provide specific overrides, everything else will be taken from
the values-file inside the repository(and thus automatically updated together with the repo).

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 50 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Click create and wait until its running:

Applications | sealed-secrets APPLICATION DETAILS
APPHEALTH CURRENT SYNC STATUS WORE LAST SYNG RESULT WORE
W Healthy @ Synced To HEAD (30cbeeb) @ Sync OK To €705292

21 hours aga (M 2022 161529 GM

HE

[@ synced
O © ouoisyne

[# Healthy @ sealed-secrets
vo
[O Progressing 21w

[0 % Degraded = BT
[© Suspended
O & Missing e

O © unknown

i@ {9 ¥ :Q

n
v
a..

iQ
oF

(
(13

8. Create secrets

The first applications to be deployed will be the Orion-LD Context Broker together with its MongoDB. In
order to communicate in a secure way, the need to use a secret. We will create a secrets-application for our
target namespace FIWARE and prepare the secrets via sealed-secrets. For your secrets to be secure, a different
repository should be used. The secret-files inside this repository will only work with our cluster, since they
can only be decrypted by the sealed-secrets controller they were created at.

1. Create the manifest for the secret(mongodb-secret.yaml) to be used at mongodb(the data-entries need
to follow the requirements of the target chart, e.g. bithami/mongodb):

apiVersion: vl

kind: Secret

metadata:

name of the secret
name: mongodb-secret

namespace the secret should be deployed to - important, sealed-secrets will check the namespace before
decryption

namespace: fiware

data:

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 51 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

the actual data, needs to be base64 encoded
mongodb-password: cGFzc3dvemQ=
mongodb-replica-set-key: cGFzc3dvemQ=
mongodb-root-password: cGFzc3dvemQ=deploy orion-1d

! Do never push this file to git. If it happens by accident, try not to remove it but replace all of them.

Install kubeseal

kubeseal is the client-side application for creating the sealed-secrets. Install it, following the official
documentation

Seal the secret
The secrets now needs to be encrypted before put into git:

pipe the manifest into kubeseal. We need to specify the controller and its namespace, since we installed it
out of its default location kubeseal <mongodb-secret.yaml >mongodb-sealed-secret.yaml -o yaml --controller-
namespace sealed-secrets --controller-name sealed-secrets

The resulting "mongodb-sealed-secret.yaml" will look similar to:
apiVersion: bitnami.com/vlalphal

kind: SealedSecret

metadata:

name: mongodb-secret

namespace: fiware

spec:

encryptedData:

mongodb-password:
AgALc3Y716MhLszeRVbfyWnQVi0Jdjrozxyw1syAWRbIZAKsw8TkI1h+6zcUIp7v5U+/G3LZerTZoZyr61c
LXeoBNCXTPHSIDMOIh{FevP2rOfyicEo7E8pAzfsgh9BflUcGhUJADajCtQVhvTonArt+xYsEx0TFs97/Q9
Vp1boj/GyO/ve/9Ly++hs29/Dh1W1QSyNXRs5g1ZKdGveVICzQ4iZF{+V6aJfrXUpHNgZyNuMGzpPJlzy6
TpignKqulRoiFCByVazeU5IRi13VAut4dW/aFeCEWo0alZhHrWHLxaJWbSKzmR2L pk48n7e4tBPjFvQPf3E;j
05qdrwTTwKo+TWkSU4DpY307NDO+k0DSOpq3SvZfEQYh3DPAj4grXfyHBXjz9mDmg3ZApztBdxwC
RRIG2Uh3DfY 15AkYMWPkkqhisApPJdb8 AWjydsEutxf7gcSMLRyYBRrKP7ewl]jzGXO0s3AGIMzoV3BA/
kK8madkInyLQGIAOcff4AMgTXDel XCiBUeE/AOIbFe9Z/X/NDUc6P3HGhfompvL2V4ARXxBEMqAC9EVE
mM+LVT40mKXyi7g90oMDDAbY 7Mp9XMhY+B20+IxqeW08kMzylODMuJ8h9om8A4MW I MrxWpi2P7
SoV4/fRmgetkb1rpabR2Jd0arB+RHEA2/zhwDeDbNGRoNkh9esN1AS566ALJO+YxxCyFc3lpNeSeeTqgnDz
59uCFJwauKkc4AzIwbHBmAYnnGfPBrhMOJRNdxJ

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 52 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

mongodb-replica-set-key:

AgAbieAbFOoVy4IBiNQDU+rmJAre8p3ThmDMzSmnaBOhnKqw Yk3zOxcZfEyPKXH{f11PPv8It/H44gzyk
M4NP8Hi9QQK;jdBqYkvE77zfOLPQAjcbwkfxjdpfsUx85n7KcCwFuQLY 1 Xu/b8G6zxI/+XW/f/sKuiX2qAc
KlzMLk2dAWkeU8TgA+S5YPPgHyDAEnJaKIRoKq7ADUeQaee8Bt9HvVQhhNDOEZyhuyLrOo/fTajY XK
2u0malLARf79ja9080Bqpc/H5gQAP/Sd3+Q7U6pS+Eo07k8+t1 LnG7G+Hbc62a]MoEZo4pJhMyqy+wFjqmZi
hjVICEkf6qPOTuLBOSIN2EYs5Jr8pegbrCFulexqf62 Y1tQ+U//24iIEUVNrUM9QaBBupCWt0gdoDQTEK 5S¢
6+dyYvi6zmKZwosfQKYbLNEwzJdJp26K711BQwGdjmbZIkpBHV7u7QeLO8SG3VaoHOfFHC3vMRE4U
Ad7afwrHuK26Tsd1dU1m1tK9nnwLqROAoYuHHK7ZQAt1iLOg5xuiENIp3K2ZVxzmK+I5J3coE3ic5KST

Ri12fSEaV5Rk504GJQ70+m75UImdY Be+tvmbvsyAzwkMiJwGxWI9MaKwA8ceKQPldqOilTFTcogQ4dq8
Vw9Zy8JvSmdONpOZP4xXNQNSKOYpEOBgDN7+U7dm3ar9108ErjlhnCASezWCHalymGInF5tqpKiT30/g
XAN;jUeTO2fdKs3c/DuEj27Z4M/hVmdhc24pB

mongodb-root-password:
AgAeMwbU6j+vIUXEgLRVFtscljC7xHXz8w16qjJzhUbpe7EcXAq24qCzHo0hJA2b30Zmbu60OeNnQAL;P
VIUZ5Kz4CiQf8kICe3RECqYbMo+rAslZPcIMgnOzuVIIN Vrbro6 W0pvQNnnzr3s+DSINki9Qudq18qjSrK3h
vijroibBOTF77115PleptAzdm10Y+kwRTKDTwTqWSFPPzQqJKFE/JAnL/oC+Li4woaDGJTuvEqsfl2qrpmEF
+76iCRk20jMGMVuV-+ighlcemISyUcCvL9DnxbcybA8x2vd6r7p+3ZbQat+612FLhTmh/78vwNWKuQyWL
D/gP0qo8VI7TtBwX8AQhX{KCHLIeBE4DnepGH+r6dzK{BZGXKokynWXvfcXrd4rBISscfVHIIpagrY OShv
1UIsFdV1nD8CVISQEXZ9Z0dcbm4ZduT3X00J7+vooccPPEucV1S3HdifPDjA032zHIRAYMBqA+CL2R
Rr+JpnvHVMoPS4f6K T8y3ydadllg7dFSIzyNciSY9ualLDQ28im6fa5aqXoQtKQZmUWSXIa4bd06dHJdygm
+eQUDzxrZmAY48sRi6lvTtTZeU/MKiQDzmTTkBDal Cimsly2ceMBnFESFLA/D/aTE2L WTRMrRXCxNk
FiTKf3wE+919HdjgHREAZjtNQd+plQIm6thlaXtIDUtXL5qOkporXACKnykdZdhNYkkMdkBceqjNLpvTZ4
InsXiTrX8fWT6v29920; TDHuySJspBZ

template:

metadata:

name: mongodb-secret
namespace: fiware

Push the mongodb-sealed-secret.yaml file to your repository
Click on "NEW APP" - this step will continuously repeat =

Applications

DD - ,

Y Fll TERZ

Fill out the form - in contrast to "sealed-secrets" this will consist of plain manifests(like
"namespaces")

the example will use this repository, please replace with your own

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 53 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

General:

-> Application name: fiware-secrets

-> Project: default

-> Sync Policy: automatic

Source:

-> Repository URL: <YOUR_ REPOSITORY>

-> Path: aws/fiware/secrets Destination:

-> Cluster URL: -- use the URL of the cluster added via argocd-cli
NEEDS to be the same as defined in the secret

-> Namespace: fiware

Click create and wait until the sealed-secret is deployed and an unsealed secret is created from
it:

Applcations | fiware-secrets APPLICATION DETAILS
oo K @ arroeTans JETRETE © SYNCSTATUS | "D HISTORY AND ROLLBACK | © DELETE] C' REFRESH™ sh B &5 S Logou
APP HEALTH CURRENT SYNC STATUS MORE AST SYNC RESULT MORE

W Healthy @ Synced To HEAD (f3bScidc)

Stetan Widemann <wistetan@good)

R

9. Deploy MongoDB

Deployment of the applications and databases will now all follow the same pattern - create an application in
ArgoCD, that references the repository. Check the MongoDB values file to see it referencing the created
secret - mongo-db.auth.existingSecret.

Click on "NEW APP"

Applications

R Fa
+ NEWAPP | & SYNC APPS Q (1] | (wa)
— M

Y cuTeee

Fill out the Form

General:

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 54 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

-> Application name: fiware-mongo-db

-> Project: default

-> Sync Policy: automatic

Source:

-> Repository URL: https://github.com/FIWARE-Ops/fiware-gitops
-> Path: aws/fiware/mongodb

Destination:

-> Cluster URL: -- use the URL of the cluster added via argocd-cli
-> Namespace: fiware

Helm: You can provide specific overrides, everything else will be taken from the values-file inside the
repository(and thus automatically updated together with the repo).

Click create and wait :

Applications fiware-mongo-db

APPLICATION
© appoeTALs LVLZLIZ < syne | @ syNcsTATUS | ™D HISTORVANDROLLBACK | © DELETE | C'REFRESH« e, EEE =
APP HEALTH GURRENT SYNG STATUS (TmoRE) LAST SYNG RESULT (@)
O Progressing @ Synced To HEAD (8b079af) @ Sync OK To 8b079af
. Sttan Wiedemann wwistion@goegiemai coms Suceeeded a few seconds ago (Tue Feb 22 2022 143450 GMT+0100}
. e Author Stefan Wiedemann <wistefan@googlemail.com-
Comment fix chart name

Y FTers

NAME a

fiware-mongo-dbmongodbscr... 3
© H

T fiwaremongo-db-mongodb- =
R TT IR 1)

fiware-mongo-db-mongodb-arb...

. SR fwaremongodbmongodbarb... 3

(2 few seconds |

(s few seconds |

SYNG STATUS a

O © synced fiware-mongo-db
3 © outofsync o

fiware- mongo-dbmongodb-he.
vo

(e

. J7. fwaremongo-dbmongodbrhe

endpointsiice

) -

(2 few seconds |

fiware-mongo-db-mongodb-he.

(s few seconds |

fiware-mongo-db-mongoditol

HEALTH STATUS -
O @ Healthy

3 O Progressing

[#? Degraded

[O suspended

O @ Missing

3 © unknown

e fiware-mongo-dbmongodb 3
| o

pve
»'51‘, fiware-mongo-db-mongodb s .‘
- &' oe : .
s pod
»'51‘, fiware-mongo-db-mongodb-arb... §
- &' oe
s

fiware-mongo-db-mongodi-tok.. 3
2 datadirfiware-mongo-db-mon
o

fiware-mongo-db-mongodi-0
o

(2 few seconds |

=

(2 few seconds |

fiware-mongo-db-mongodb-do.

Document name:

D4.2 GreenMov Reference Architecture and guidelines v2

Page:

55 of 61

Reference:

D4.2 Dissemination: PU Version: 1.0

Status:

Final

10. Deploy Orion-LD

Click on "NEW APP"

Applications

+ NEWAPP | 2 SYNC APPS Q (7] ()

Y cuTeee

Fill out the Form
General:
-> Application name: fiware-orion-1d
-> Project: default
-> Sync Policy: automatic
Source:
-> Repository URL: https://github.com/FIWARE-Ops/fiware-gitops
-> Path: aws/fiware/orion-ld Destination:
-> Cluster URL: -- use the URL of the cluster added via argocd-cli
-> Namespace: fiware
Helm: You can provide specific overrides, everything else will be taken from the values-file inside the

repository(and thus automatically updated together with the repo).

Advanced topics

In order to further customize deployments more tooling can be added to the cluster:

e Automatic creation of subdomains and ssl-certificates

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 56 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

https://github.com/FIWARE-Ops/fiware-gitops/blob/master/doc/ROUTES.md

Annex lll. Concepts

Reactive manifesto

The Reactive Manifesto is a set of principles for building reactive systems. A reactive system is a system that
is responsive, resilient, elastic, and message-driven. These principles were first outlined in a manifesto that
was published in 2013, and they have since been adopted by a growing number of software developers and
organizations.

The main principles of the Reactive Manifesto are as follows:

e Responsive: A reactive system should respond to user requests in a timely manner, providing
feedback and updates to the user as needed.

e Resilient: A reactive system should be able to withstand failures and continue to function correctly,
even in the face of external factors such as network outages or hardware failures.

e [FElastic: A reactive system should be able to scale up or down as needed to meet changing demands,
without compromising performance or reliability.

e Message-driven: A reactive system should use asynchronous message-passing to communicate
between components, allowing them to interact in a loosely-coupled and scalable manner.

Overall, the Reactive Manifesto provides a set of guiding principles for building systems that are responsive,
resilient, elastic, and message-driven. These principles can help developers to create systems that are better
able to handle the challenges of today's complex and distributed environments.

Blue-Green deployment

Blue-green deployment is a technique for deploying software updates. It involves maintaining two identical
production environments, called blue and green, and switching traffic between them in order to deploy new
versions of the software. This allows you to deploy updates without any downtime, and it makes it easier to
roll back to the previous version of the software if there are any issues.

The basic steps for a blue-green deployment are as follows:
e The blue environment is used for production, and the green environment is idle.
e A new version of the software is deployed to the green environment.

e The green environment is tested to make sure that the new version of the software is working as
expected.

e Once the green environment has been tested and verified, traffic is switched from the blue
environment to the green environment, so that users are now accessing the new version of the
software.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 57 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

The blue environment is then idle, and can be used for the next deployment.

Overall, blue-green deployment is a useful technique for deploying software updates in a way that minimizes
downtime and allows for easy rollbacks. It can help to improve the reliability and availability of your
software.

Canary deployment

Canary deployment is a technique for rolling out new software versions to a subset of users, before deploying
the update to the entire user base. This allows you to test the new version of the software in a production

environment, with real users, before making it available to everyone. This can help to ensure that the update is

working as expected, and it can give you an opportunity to fix any issues before they affect a large number of

users.

The basic steps for a canary deployment are as follows:

A new version of the software is created and deployed to a small group of users, called the "canary"
group.
The canary group uses the new version of the software, and their usage is monitored to see if there are

any issues or problems.

If the canary group experiences any issues, the new version of the software can be rolled back, and the
problem can be fixed.

If the canary group does not experience any issues, the new version of the software can be deployed to
a larger group of users, such as a "beta" group.

If the beta group also does not experience any issues, the new version of the software can be deployed
to the entire user base.

Overall, canary deployment is a useful technique for rolling out new software versions in a controlled and safe

manner. [t allows you to test new versions of the software with real users, and it provides an opportunity to fix
any issues before they affect a large number of users.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 58 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

Annex V. Security

Here there are some generic recommendations regarding security that can be adopted by the use cases in their
architectures. Further information can be found in the Security Access and API Management repository [36].

General security considerations

The security of the overall system is a multilayer building, and the precise requirements should be described

for each implementation of the reference architecture.

anyhow some elements to build the security of the system has to be in place.

A proper identification and permission system has to be implemented across the system. This
mechanism has to be able to restrict access to non-authorized people to the restricted operations.

For each component a precise description of the function has to be available.

Additionally, a feedback mechanism has to be in place, and it has to be proved that it is regularly
checked, and the raised issues addressed and eventually solved.

The process for contribution of new features or fixes has to be clearly explained and the mechanism
for contribution also available and clear. Some standards for contribution to be accepted should be
also documented (in order to prevent low quality contributions that can drag the overall security of a
component). Complementary, a discussion mechanism for new features or approaches to fixes has to
be available.

It is required to have updated documentation of the software
Last but not least the overall project has to be maintained. (i.e. for basic software updates)

A unique version number has to identify different version and a proper naming method for versioning
should be clearly described and adopted.

the different software blocks must have an automatic testing mechanism and explanations on how to
run it to check proper running.

Cryptographic protocols and algorithms have to be implemented whenever necessary to ensure
security. The default security mechanisms within the software produced by the project MUST NOT
depend on broken cryptographic algorithms

Whenever applicable every element of the project MUST use a delivery mechanism that counters
man-in-the-middle attacks.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 59 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

As popularized by the Kubernetes project, the security of a cloud native platform relies in the security of the
4C’s:

e Security of the code

e Security of the container
e Security of the cluster

e Security of the cloud

The security of the code and of the container are already discussed in detail in the previous sections. The
security of the cluster is developed in the following paragraphs.

The security of the cloud will have to be evaluated on a case-by-case basis, as the pilot sites emitted the will to
host the FIWARE platform on their own premises or within the infrastructure of their usual cloud provider.
Security recommendations will be provided and checked all along the deployment to ensure all the platforms
are deployed according to the best practices in cloud security, with support from the technical team of the
project.

Security of communications

The security of communications applies to different levels:

e First of all, all HTTP communications have to be done through HTTPS (the use of the Certbot
certificate provider, which is now well established and largely deployed, will be considered first)

e The communications between the FIWARE platform and the legacy systems will be secured with
respect to the security protocols set by each pilot. This is dealt with in the next section.

e The internal communications between the components of the platform should also preferably be
secured. This is typically done by using the TLS cryptographic protocol when exchanging data
between components, to avoid traffic sniffing

e The communications from and to the sensors, via the IoT Agents. The security of these
communications depends on the underlying protocol, so it will be defined and applied on a case-by-
case basis.

Management of secrets

Every microservice has to know some passwords, secrets or tokens to communicate with other systems (be it a
database, an external service, an authentication provider, and so on). They of course must not be stored in
clear text, not even into a private VCS. A first considered step is to use environment variables defined only on
target hosts. A more robust approach is to encrypt secrets and use an external service to manage them (for
instance HashiCorp Vault or Spring Vault).

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 60 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

=g

Slow down attackers

Eventually, an attacker will try to brute force the authentication to the API in order to gain access to the
system and expose sensitive or confidential data. One measure to mitigate that risk is to slow down such
attacks. This can be done by implementing rate-limiting, whether in the application code or at an API gateway
level. It is also more effective if a SIEM tool is deployed inside the platform, for a quicker reaction to such
events.

Intrusion detection system

The production also has to be protected from intrusions, that means that an intrusion detection system must be
set up (existing tools like Falco, Suricata or else Snort will be considered). This eventually can be completed
by a SIEM tool.

Data integrity

Finally, the data at rest in databases has to be encrypted, as it can potentially be leaked in case an attacker
gains access to the platform. As this is an expensive process, only sensitive or confidential data will be
encrypted. The techniques and algorithms depend on each database vendor thus, it will be checked on a per-
database basis, and adapted security measures will be applied on each.

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 61 of 61

Reference: D4.2 Dissemination: PU Version: 1.0 Status: Final

	Document Information
	Table of Contents
	List of Figures
	List of Acronyms
	Executive Summary
	1 Introduction
	1.1 Purpose of the document
	1.2 Relation to other project work
	1.3 Structure of the document
	1.4 Glossary adopted in this document

	2 Basic software components
	2.1 Introduction to FIWARE architecture, standards and components
	2.2 Reference architecture levels
	2.3 Global diagram
	2.4 Core components of the reference architecture
	2.4.1 Context broker
	2.4.2 NGSI-LDES
	2.4.3 IoT Agents

	2.5 Persistence components of the reference architecture
	2.5.1 Cygnus-LD
	2.5.2 Other persistence components

	2.6 Security components
	2.6.1 Keycloak
	2.6.2 Keyrock
	2.6.3 Wilma
	2.6.4 Authzforce

	2.7 Other components
	2.7.1 Connection with open data portals

	3 Deployment of the platform
	3.1 Installation of the core context broker
	3.1.1 Installation of Orion-LD on MongoDB

	3.2 Persistence Components
	3.2.1 Installation of Cygnus

	3.3 Installation of security components
	3.3.1 Installation of Keycloak
	3.3.2 Installation of Keyrock
	3.3.3 Installation of Wilma
	3.3.4 Installation of Authzforce

	3.4 Configuration of federated scenarios
	3.4.1 Types of deployments simple and advanced
	3.4.2 Advanced deployments
	3.4.3 Federated deployments
	3.4.4 Multitenancy
	3.4.5 Distributed operation modes
	Additive Registrations
	Inclusive
	Auxiliary
	Proxied Registrations
	Exclusive
	Redirect

	4 Operation of the platform
	4.1 Operational aspects
	4.2 Secure code, from design to delivery
	4.3 Secure by design
	4.4 Dependencies scanning
	4.5 DevSecOps

	5 Data Architecture
	5.1 Data Storage architecture and technical format
	5.2 Basic data classes / entities

	6 Conclusions
	7 References
	Annex I. Requirements for a generic enabler
	Licensing and open SSF Best practices signature
	General requirements
	Documentation requirements
	Development requirements

	Annex II. An example of configuration
	How to setup
	1. Prepare AWS account
	2. Install OpenShift cluster
	3. Install certificates
	Clone the acme.sh github-repo
	Setup AWS credentials
	Obtain certificates
	Create the secrets
	Patch ingress-controller and api-server
	Update kubeconfig
	Verify success

	4. Install ArgoCD
	Create namespace
	Install ArgoCD operator
	Deploy an instance of ArgoCD

	5. Prepare ArgoCD for namespaced deployments
	6. Deploy namespaces
	Click create and wait until its running:

	7. Deploy bitnami/sealed-secrets
	Click create and wait until its running:

	8. Create secrets
	Install kubeseal
	Seal the secret
	Push the mongodb-sealed-secret.yaml file to your repository
	Fill out the form - in contrast to "sealed-secrets" this will consist of plain manifests(like "namespaces")
	Click create and wait until the sealed-secret is deployed and an unsealed secret is created from it:

	9. Deploy MongoDB
	Click on "NEW APP"
	Fill out the Form
	Click create and wait :

	10. Deploy Orion-LD
	Click on "NEW APP"
	Fill out the Form

	Advanced topics

	Annex III. Concepts
	Reactive manifesto
	Blue-Green deployment
	Canary deployment

	Annex IV. Security
	General security considerations
	Security of communications
	Management of secrets
	Slow down attackers
	Intrusion detection system
	Data integrity

