
 

This document is issued within the frame and for the purpose of the GreenMov project. This project has received funding from the 

European Union’s Innovation and Networks Executive Agency – Connecting Europe Facility (CEF) under Grant AGREEMENT No 

INEA/CEF/ICT/A2020/2373380 Action No: 2020-EU-IA-0281. The opinions expressed and arguments employed herein do not 

necessarily reflect the official views of the European Commission. 

This document and its content are the property of the GreenMov Consortium. All rights relevant to this document are determined by the applicable 

laws. Access to this document does not grant any right or license on the document or its contents. This document or its contents are not to be used or 

treated in any manner inconsistent with the rights or interests of the GreenMov Consortium or the Partners detriment and are not to be disclosed 

externally without prior written consent from the GreenMov Partners.  

Each GreenMov Partner may use this document in conformity with the GreenMov Consortium Grant Agreement provisions  

(*) Dissemination level.-PU: Public, fully open, e.g. web; CO: Confidential, restricted under conditions set out in Model Grant Agreement; CI: 

Classified, Int = Internal Working Document, information as referred to in Commission Decision 2001/844/EC. 

 

Green mobility data models and services for 

smart ecosystems  

 

D4.2 GreenMov Reference Architecture and guidelines v2 

 

Document Identification 

Contractual Delivery Date 28/02/2023 

Actual Delivery Date 28/02/2023 

Responsible Beneficiary FIWARE Foundation 

Contributing Beneficiaries IMEC, ATOS 

Dissemination Level PU 

Version 1.0 

Total Number of Pages: 61 

 

Keywords 

Sustainable Mobility, Data Models, Reference Architecture 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 2 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Document Information 

Related Activity Activity 4 Document Reference D4.2 

Related Deliverable(s) D4.1 Dissemination Level (*) PU 

 

List of Contributors 

Name Partner 

Alberto Abella FIWARE Foundation 

Brecht Van de Vyvere IMEC 

Rémi Ollivier ATOS 

 

Document History 

Version Date Change editors Changes 

0.1 21/09/2022 Alberto Abella (FF)  Starting ToC 

0.2 14/11/2022 Alberto Abella (FF)  Contributions from Activity 5 

0.3 28/11/2022 Brecht Van de Vyvere 

(IMEC) 

Update coverage index, explain source 

selection library 

0.4 01/12/2022 Alberto Abella (FF)  Reordering and filtering contents 

0.5 21/12/2022 Alberto Abella (FF)  Indexing illustrations and tables. Review of 

the content 

0.53 31/01/2023 Alberto Abella (FF)  Restructuring because of creation of 

deliverable 4.3.  

0.6 08/02/2023 Alberto Abella (FF)  

Julian Andrés Rojas 

(IMEC) 

Extension of the LDES description and 

completed  the components installation 

description 

0.65 15/02/2023 Remi Ollivier (ATOS) Contribution to section 2.4 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 3 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Document History 

Version Date Change editors Changes 

0.7 16//02/2023 Alberto Abella (FF) References review and new ones 

0.8 22//02/2023 Alberto Abella(FF) Review structure and contents based on the 

comments of the internal reviewer 

0.9 27//02/2023 Alberto Abella(FF) More restructuring, adding details and 

formatting 

0.91 27//02/2023 Alberto Abella(FF) Removed tracked changes 

0.92 27//02/2023 Alberto Abella(FF) Formatting 

0.95 28/02/2023 María Guadalupe 

Rodriguez (ATOS) 

Quality Review Form 

1.0 28/02/2023 Carmen Perea (ATOS) FINAL VERSION TO BE SUBMITTED 

 

Quality Control 

Role Who (Partner short name) Approval Date 

Reviewer Ignacio Elicegui (ATOS) 27/02/2023 

Quality manager María Guadalupe Rodríguez (ATOS) 28/02/2023 

Project Coordinator Carmen Perea (ATOS) 28/02/2023 

 

  



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 4 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Table of Contents 

Document Information ............................................................................................................................ 2 

Table of Contents .................................................................................................................................... 4 

List of Figures ......................................................................................................................................... 8 

List of Acronyms ..................................................................................................................................... 9 

Executive Summary ............................................................................................................................... 10 

1 Introduction .................................................................................................................................... 11 

1.1 Purpose of the document .................................................................................................................... 11 

1.2 Relation to other project work ............................................................................................................ 11 

1.3 Structure of the document .................................................................................................................. 11 

1.4 Glossary adopted in this document .................................................................................................... 12 

2 Basic software components ............................................................................................................ 14 

2.1 Introduction to FIWARE architecture, standards and components .................................................... 14 

2.2 Reference architecture levels ............................................................................................................. 14 

2.3 Global diagram ................................................................................................................................... 15 

2.4 Core components of the reference architecture .................................................................................. 18 

2.4.1 Context broker .............................................................................................................................. 18 

2.4.2 NGSI-LDES .................................................................................................................................. 18 

2.4.3 IoT Agents .................................................................................................................................... 19 

2.5 Persistence components of the reference architecture ........................................................................ 20 

2.5.1 Cygnus-LD .................................................................................................................................... 20 

2.5.2 Other persistence components ...................................................................................................... 20 

2.6 Security components .......................................................................................................................... 20 

2.6.1 Keycloak ....................................................................................................................................... 20 

2.6.2 Keyrock ......................................................................................................................................... 21 

2.6.3 Wilma ............................................................................................................................................ 21 

2.6.4 Authzforce .................................................................................................................................... 21 

2.7 Other components .............................................................................................................................. 21 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 5 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

2.7.1 Connection with open data portals ................................................................................................ 21 

3 Deployment of the platform ........................................................................................................... 23 

3.1 Installation of the core context broker ............................................................................................... 24 

3.1.1 Installation of Orion-LD on MongoDB ........................................................................................ 24 

3.2 Persistence Components .................................................................................................................... 24 

3.2.1 Installation of Cygnus ................................................................................................................... 24 

3.3 Installation of security components ................................................................................................... 25 

3.3.1 Installation of  Keycloak ............................................................................................................... 25 

3.3.2 Installation of Keyrock ................................................................................................................. 25 

3.3.3 Installation of Wilma .................................................................................................................... 25 

3.3.4 Installation of Authzforce ............................................................................................................. 26 

3.4 Configuration of federated scenarios ................................................................................................. 26 

3.4.1 Types of deployments simple and advanced ................................................................................. 26 

3.4.2 Advanced deployments ................................................................................................................. 26 

3.4.3 Federated deployments ................................................................................................................. 26 

3.4.4 Multitenancy ................................................................................................................................. 27 

3.4.5 Distributed operation modes ......................................................................................................... 28 

4 Operation of the platform ............................................................................................................... 30 

4.1 Operational aspects ............................................................................................................................ 30 

4.2 Secure code, from design to delivery ................................................................................................. 30 

4.3 Secure by design ................................................................................................................................ 30 

4.4 Dependencies scanning ...................................................................................................................... 31 

4.5 DevSecOps ......................................................................................................................................... 31 

5 Data Architecture ........................................................................................................................... 34 

5.1 Data Storage architecture and technical format ................................................................................. 34 

5.2 Basic data classes / entities ................................................................................................................ 35 

6 Conclusions .................................................................................................................................... 37 

7 References ...................................................................................................................................... 38 

Annex I. Requirements for a generic enabler ........................................................................................ 40 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 6 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Licensing and open SSF Best practices signature .......................................................................................... 40 

General requirements ..................................................................................................................................... 41 

Documentation requirements ......................................................................................................................... 41 

Development requirements ............................................................................................................................ 41 

Annex II. An example of configuration ................................................................................................. 42 

How to setup .................................................................................................................................................. 42 

1. Prepare AWS account ................................................................................................................................ 42 

2. Install OpenShift cluster ............................................................................................................................ 42 

3. Install certificates ....................................................................................................................................... 43 

Clone the acme.sh github-repo ................................................................................................................... 43 

Setup AWS credentials............................................................................................................................... 43 

Obtain certificates ...................................................................................................................................... 43 

Create the secrets ........................................................................................................................................ 43 

Patch ingress-controller and api-server ...................................................................................................... 43 

Update kubeconfig ..................................................................................................................................... 44 

Verify success ............................................................................................................................................ 44 

4. Install ArgoCD ........................................................................................................................................... 44 

Create namespace ....................................................................................................................................... 44 

Install ArgoCD operator ............................................................................................................................. 44 

Deploy an instance of ArgoCD .................................................................................................................. 45 

5. Prepare ArgoCD for namespaced deployments ......................................................................................... 46 

6. Deploy namespaces .................................................................................................................................... 47 

Click create and wait until its running: ...................................................................................................... 49 

7. Deploy bitnami/sealed-secrets ................................................................................................................... 49 

Click create and wait until its running: ...................................................................................................... 51 

8. Create secrets ............................................................................................................................................. 51 

Install kubeseal ........................................................................................................................................... 52 

Seal the secret ............................................................................................................................................. 52 

Push the mongodb-sealed-secret.yaml file to your repository ................................................................... 53 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 7 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Fill out the form - in contrast to "sealed-secrets" this will consist of plain manifests(like "namespaces") 53 

Click create and wait until the sealed-secret is deployed and an unsealed secret is created from it: ......... 54 

9. Deploy MongoDB ...................................................................................................................................... 54 

Click on "NEW APP" ................................................................................................................................ 54 

Fill out the Form ......................................................................................................................................... 54 

Click create and wait : ................................................................................................................................ 55 

10. Deploy Orion-LD ..................................................................................................................................... 56 

Click on "NEW APP" ................................................................................................................................ 56 

Fill out the Form ......................................................................................................................................... 56 

Advanced topics ............................................................................................................................................. 56 

Annex III. Concepts ............................................................................................................................... 57 

Reactive manifesto ......................................................................................................................................... 57 

Blue-Green deployment ................................................................................................................................. 57 

Canary deployment ........................................................................................................................................ 58 

Annex IV. Security ................................................................................................................................ 59 

General security considerations ..................................................................................................................... 59 

Security of communications .......................................................................................................................... 60 

Management of secrets .................................................................................................................................. 60 

Slow down attackers ...................................................................................................................................... 61 

Intrusion detection system ............................................................................................................................. 61 

Data integrity ................................................................................................................................................. 61 

 

 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 8 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

List of Figures 

Figure 1: Global diagram for the reference architecture. source: FIWARE reference architecture for cities 

adapted for GreenMov. ....................................................................................................................................... 18 

Figure 2: Scenario for broker federation ............................................................................................................ 28 

Figure 3: Diagram for distributed operation modes ........................................................................................... 29 

Figure 4: Entity and attributes ............................................................................................................................ 35 

Figure 5: Argo console installation .................................................................................................................... 43 

Figure 6: Argo console configuration ................................................................................................................. 43 

Figure 7: Argo deployment screen ..................................................................................................................... 44 

Figure 8: Argo namespaces configuration .......................................................................................................... 45 

Figure 9: Argo. Creation of new app .................................................................................................................. 46 

Figure 10: Argo. Configuration of new app ....................................................................................................... 46 

Figure 11: Argo. Monitoring of app ................................................................................................................... 47 

Figure 12: Argo. Create new app ....................................................................................................................... 47 

Figure 13: Argo. Creation of new app ................................................................................................................ 48 

Figure 14: Argo. Monitoring of apps.................................................................................................................. 49 

Figure 15: Argo. Creation of new app ................................................................................................................ 52 

Figure 16: Argo. Secret configured .................................................................................................................... 52 

Figure 17: Argo. New app .................................................................................................................................. 53 

Figure 18: Argo. Deployment of Mongodb ........................................................................................................ 54 

Figure 19: Argo. Creation of new app ................................................................................................................ 54 

 

 

 

 

 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 9 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

List of Acronyms 

Abbreviation / 

acronym  

Description 

CI/CD 
Continuous integration / continuous deployment. Set of practices used in 

software development that aim to streamline the development and 

deployment process, making it faster and more efficient. 

CSR 
Context Source Registrations 

Dx.y 
Deliverable number y belonging to Activity x 

EC 
European Commission 

GE 
Generic Enabler. Every approved component of the FIWARE framework. 

JSON 
JavaScript serialized object notation. It is an open standard file format and 

data interchange format that uses human-readable text to store and transmit 

data objects consisting of attribute–value pairs and arrays (or other 

serializable values) 

JSON schema 
JSON Schema specifies a JSON-based format to define the structure of 

JSON data for validation, documentation, and interaction control. 

JSON-LD 
It is a method of encoding linked data using JSON.  

LDES 
Linked Data Event Stream 

ODALA 
ODALA is an initiative (European project) that aims to promote the use of 

Big Data to facilitate and speed up decision-making in public 

administrations. This initiative has a social focus and is designed to help the 

use of Smart Cities technology simply and practically. 

SHACL 
Shapes Constraint Language. Language for describing Resource 

Description Framework graphs. 

  

https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Electronic_data_interchange
https://en.wikipedia.org/wiki/Human-readable_medium
https://en.wikipedia.org/wiki/Attribute–value_pair
https://en.wikipedia.org/wiki/Array_data_type
https://en.wikipedia.org/wiki/Serialization
https://en.wikipedia.org/wiki/Linked_data
https://en.wikipedia.org/wiki/JSON


 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 10 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Executive Summary 

This document outlines the second version of the GreenMov common reference architecture aimed at 

implementing city use cases. It extends the security components described in the first version and remove 

others not useful for the current use cases. It also incorporates approaches for enhancing scalability and 

provides a set of guidelines for specific scenarios using city pilot examples. It also incorporates feedback 

gathered from the use cases.  

The architecture supports smart city services under activity 3 and the implementation of the use cases under 

activity 5, as well as partially integrates data sources and entities stored in different elements of the 

architecture described in the data models described in activity 2.  

It is mostly based on FIWARE enablers although other components, Grafana, are also included. It also 

provides links for deploying necessary components to support local customization in each use case. This 

deliverable is complemented by document D4.3 which delves into advanced concepts, such as performance 

analysis of core components in various configurations and configuration of a system federation. The document 

outlines the high-level architecture and its elements and how they connect, covers data persistence in services, 

and provides identification and access control. It ends with recommendations on platform operation and 

complementary information on main element configurations in the annexes. 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 11 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

1 Introduction 

1.1 Purpose of the document 

This document extends the content of the deliverable 4.1 with a tighter integration of the requirements coming 

from the use cases and adding more specific instructions on how to deploy the reference architecture.  

1.2 Relation to other project work  

This document is the second version of the GreenMov reference architecture, including new components and 

an extended description of the software components and data flows. Additionally, the performance analysis 

and other configuration options have been also extended from previous deliverable 4.1. It is also added some 

consideration for the deployment and exploitation and about security.  

1.3 Structure of the document 

This document is structured in 6 major chapters, including this one Chapter Introduction 1 and 3 annexes. 

The chapter 1 is an introduction to the purpose of this document, its relationship to other documents 

generated, its overall structure and the glossary of terms to understand its full content of the document.  

Chapter 2 describes the main components to be used from a high-level architecture diagram to the detailed 

description of the individual components and their connection with other external systems. It includes an 

analysis of the performance of the core component, the context broker, in different configurations and 

implementations. 

Chapter 3 provides guidance on the deployment of the different components, including the data persistence 

components, those related with authentication and access control, visualization and how to federate different 

instances.  

Chapter 4  introduces operation aspects to run the platform and includes a specific section regarding security.  

Chapter 5  states the principles of the data architecture that is further developed in the documents generated  

of the activity 2. 

Chapter 6 presents the conclusions of the document.  

There are also 4 annexes, the first one devoted to the description of the requirements of a software package to 

become a generic enabler approved to belong to the FIWARE framework. The second annex describes an 

extensive example on how to deploy several of the core components of the platform. Finally, the third annex 

describes 3 key concepts for the operation of the platform and the fourth provides some recommendations for 

the security of the platform. 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 12 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

1.4 Glossary adopted in this document  

This glossary replicates most of the terms of the glossary in deliverable 4.1 and it is included here only for 

clarification purposes for those readers that have not read previous deliverable.  

• Context broker. A Context Broker is an open-source platform that allows developers to manage and 

store contextual information about a network of smart objects, devices and other sources of data. It 

provides a unified view of the contextual information and allows for real-time querying, geoquerying 

and updates of the information. The Context Broker can be used in IoT, smart city and smart industry 

applications to improve data management and enable better decision-making. The main functions of a 

context broker are: 

o Context information storage: The context broker stores context information, such as device 

data or application data, in a centralized repository. 

o Context information retrieval: The context broker enables applications and devices to 

retrieve context information as needed. 

o Context information distribution: The context broker can distribute context information to 

multiple applications and devices in real-time. 

o Context information management: The context broker provides APIs for managing context 

information, such as creating, updating, and deleting entities. 

o Context information integration: The context broker can integrate context information from 

multiple sources, such as sensors, devices, and applications, into a unified view. 

o Context information querying: The context broker enables applications to query context 

information in a flexible manner, such as by location, time, or entity type. 

o Context information subscription: The context broker can support subscriptions, allowing 

applications to receive notifications when the context information they are interested in 

changes like reaching a threshold or the creation of an attribute. 

• Cygnus.  It is a software package for managing the history of the context that is created as a stream of 

data which can be injected into multiple data sinks, including some popular databases like 

PostgreSQL, MySQL, MongoDB or AWS  DynamoDB as well as BigData platforms like Hadoop, 

Storm, Spark or  Flink. 

• Draco  is another software package to provide a data persistence mechanism for managing the history 

of context. It is based on Apache NiFi and is a dataflow system based on the concepts of flow-based 

programming. It supports powerful and scalable directed graphs of data routing, transformation, and 

system  mediation logic and also offers an intuitive graphical interface. 

• Kubernetes. Kubernetes, often abbreviated as "K8s", is an open-source container orchestration 

platform that automates the deployment, scaling, and management of containerized applications.  

Containers are a lightweight and portable way to package and deploy applications, and Kubernetes 

provides a way to manage and automate these containers at scale. It can run on a variety of platforms, 

including public, private, and hybrid clouds, as well as on-premises data centers. 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 13 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

• Kurento. is a component that enables real-time processing of media streams supporting the  

transformation of video cameras into sensors as well as the incorporation of advanced application 

functions (integrated audiovisual communications, augmented reality, flexible media playing and 

recording,  etc). 

• Linked data. It is structured data, which is interlinked with other data, so it becomes more useful 

through semantic queries. 

• Man-in-the-middle. Cyberattack where the attacker secretly relays and possibly alters the 

communications between two parties who believe that they are directly communicating with each 

other 

• Near to real-time system. A near to real-time system is a information system that processes and 

responds to inputs in a timely manner, where the response time is quite relevant but not critical for the 

correct functioning of the system. For this document it means in the range of a second to few minutes.  

• Orion. Software solution for context information management compliant with NGSIv2 specification, 

created by Telefónica, FIWARE Foundation and other entities, available as a Generic enabler of the 

FIWARE platform  [1].  

• Orion-LD. Software solution for context information management compliant with NGSI-LD 

specification, created by Telefónica, FIWARE Foundation and other entities, available as a Generic 

enabler of the FIWARE platform [2]. 

• Real-time system. A real-time system is a information system that processes and responds to inputs 

in a timely manner, where the response time is critical for the correct functioning of the system. For 

this document it means in the range of fraction of a second or shorter. In real-time systems, the 

response time is strictly bounded and determined by the system's requirements, and the correctness of 

the system's behavior depends not only on the logical result of computations, but also on the time at 

which the results are produced.  

• Scorpio. Software solution for context information management compliant with NGSI-LD 

specification, created by NEC and other entities, available as a Generic enabler of the FIWARE 

platform [3]. 

• Stellio. Software solution for context information management compliant with NGSI-LD 

specification, created by EGM and other entities, available as a Generic enabler of the FIWARE 

platform [4]. 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 14 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

2 Basic software components 

2.1 Introduction to FIWARE architecture, standards and components 

FIWARE NGSI is the API exported by a FIWARE Context Broker, used for the integration of platform 

components within a "Powered by FIWARE" platform and by applications to update or consume context 

information. FIWARE NGSI API specifications have evolved over time and now it is a standard under the 

umbrella of ETSI ISG CIM group [5] which the name ETSI NGSI-LD standard. The FIWARE Community 

plays an active role in the evolution of ETSI NGSI-LD specifications which were based on NGSIv2 and 

commits to deliver compatible open-source implementations of the specs. The FIWARE Community plays an 

active role in the evolution of ETSI NGSI-LD specifications and commits to deliver compatible open-source 

implementations of the specs (e.g., Orion-LD, Scorpio, and Stellio). 

Building around the FIWARE Context Broker, a rich suite of complementary FIWARE Generic Enablers are 

available, dealing with the following functionalities: 

• Core Context Management manipulates and stores context data so it can be used for further 

processing. Dark blue rectangle in the middle for the diagram with the entities stored in it and some of 

their attributes. 

• Interfacing with the Internet of Things (IoT), Robots and third-party systems, for capturing updates on 

context information and translating required actuation. Turquoise sections and light blue ones in the 

lower part of the diagram. 

• Processing, analysis and visualization of context information, implementing the expected smart 

behavior of applications and/or assisting end users in making smart decisions. Upper part with red 

background and boxes below them. 

• Interfaces with other systems and identify and access management on the right part of the diagram. 

2.2 Reference architecture levels 

The Reference Architecture should address how the integration of data and information across different 

systems on the use cases will be achieved, ensuring sustainable and efficient service provisioning. 

Interoperability should be supported in line with relevant standards (REST, NGSI, JSON-LD). 

FIWARE is a curated framework of open-source platform components which can be assembled together and 

with other third-party platform components to accelerate the development of Smart Solutions. The main and 

only mandatory component of any “Powered by FIWARE” platform or solution is a FIWARE Context Broker 

Generic Enabler, bringing a cornerstone function in any smart solution with the purpose to manage the context 

information created from one or different context providers and consumed by one or several context 

consumers. 

In this respect, the Context Broker technology will play a cornerstone role for the integration, following a 

system of systems approach, of data and information across the systems implementing the different services 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 15 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

for a given focus area (e.g., traffic management, environmental impact, or other system in relation to public 

services). Some of these systems will be provided globally as a service from public clouds. The Context 

Broker building block has been the preferred technology for other EU programs. 

The figure in the next chapter shows a diagram with the main components based on a FIWARE reference 

architecture for smart cities, where the requirements for the different use cases Murcia y Molina, Nize and 

Flanders has been taken into consideration. 

The central element of this architecture is the context broker where the retrieval and sharing of the information 

happens.  

It has four main levels. The upper level is the one for the connection with the legacy systems of the city or 

other general applications. This level will be extremely customized for every use case.  

The second level is the one with the context broker and some adapters for the connection with the legacy 

systems. It has to be noted that in right side of this level there are the identification and identity blocks. The 

use and sharing of these elements  in the second level allow the flexibility to provide solution to the different 

use cases but keeping the same basic software structure which allow scalability and shared knowledge. 

Besides this, the fact that these components come from a FIWARE reference architecture ensure a wide 

knowledge base to solve any issue of the use cases.  

The third level of the schema is populated by the adapters with the IoT world, cameras, sensors, etc.  Again, 

being based on the FIWARE components ecosystem ensures the availability of many solutions for the 

connection a large database of integration with other IoT elements and some share software frameworks for 

these cases in which a customization is required.  

The lower level (fourth) includes those IoT elements and other data sources for the solution of the city that can 

be connected thanks to the previous level without much hassle. This level retrieve data from different sources 

that can be modeled into common data models, eventually allowing seamless data sharing between use cases 

or city’s ecosystems and being stored into entities in the second level. 

2.3 Global diagram 

This simple diagram was created after gathering the requirements from the use cases in Activity 5 and 

adapting a proven reference architecture designed by the FIWARE community for smart cities. 

The main elements depicted in the next diagram are: 

• A Context Broker component [6], is at the core of the architecture, keeping a digital twin 

representation of the real-world objects and concepts relevant to the specific problem tackled: 

Environmental sensors, traffic sensors, noise sensor, bike stations, etc. 

• Southbound to the Context Broker, the NGSI IoT Agents, available as part of the FIWARE IDAS 

framework, are used for connections to the different sensors or actuators, used for example to detect 

available bikes on the stations. They perform the necessary conversions between IoT protocols and 

NGSI. In addition, System Adapters developed based on the IDAS Agent library cope with the 

connection to the legacy systems of the city as described in the services architecture. FIWARE 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 16 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

component Kurento is able to process the video streams of cameras deployed in the shop floor, which 

are helpful to detect potential obstacles or risky situations. 

• Southbound to the Context Broker, data sources can be serialized in multiple formats (JSON, CSV , 

JSON-LD...) and published through heterogeneous APIs (JSON API, LDES, NGSI-LD). 

A combination of open-source components from third party products and advanced data maps for monitoring 

processes. A number of FIWARE Data Connectors (Cygnus, Draco, Cosmos, STH Comet, QuantumLeap) are 

available as part of FIWARE to facilitate transference of historic context / digital twin information to these 

tools. 

• Transversal to all these layers, a number of FIWARE components support Identity and Access 

Management (e.g., Keycloak,  Keyrock). They control the flow of data across the different layers. 

With regards to the access to the Context Broker, they enforce the policies establishing what users can 

update, query or subscribe to changes on context / digital twin data. Note that the flow of data is not 

only south to north in the picture. Northbound applications can perform updates on context data, 

which in turn will trigger changes in the sensors, actuators or systems that are connected southbound. 

• Northbound to the Context Broker, there are several tools aimed at supporting real-time processing of 

the historical data streams generated as context/digital twin information evolves over time. 

Additionally, the NGSI-LDES component creates a scalable interface for data sharing. The 

component allows applications to replicate and synchronize with the historic and real-time context of 

entities. Example of such an application is the Coverage Index or Registry API, which can be served 

by a Context Registry and can be used by a source selection component. NGSI-LDES requires that the 

temporal and types of interfaces are available on the Context Broker. 



 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 17 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 

 

 

 

 

 

Figure 1: Global diagram for the reference architecture. source: FIWARE reference architecture for cities adapted for GreenMov. 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 18 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

2.4 Core components of the reference architecture 

2.4.1 Context broker 

The context broker integrates information from sensors, systems and other machines in the different use cases 

breaking information silos. It allows not only the retrieval of information from heterogeneous sources but also 

the querying in time and the geoquerying in spatial dimension. Additionally, it also allows the users to 

subscribe to changes or updates and to receive notifications when the conditions are met.  

This broker must support following entry points to be compatible with the NGSI-LDES: 

• the NGSI-LD temporal interface. 

• the NGSI-LD types interface. 

Examples of Context Broker we see fit: Orion-LD + Mintaka, Scorpio, Stellio.  

To be able to choose between these brokers, some load tests have been made to compare the brokers 

performance depending on the number of entities in the broker. 

Examples of Context Broker we see fit: Orion-LD + Mintaka, Scorpio, Stellio. 

• Orion-LD is an NGSI-LD compliant context broker part of FIWARE. It is developed in C++, and it 

runs under Linux. Orion-LD uses MongoDB, a document-oriented database, as a context database. 

Orion-LD also implements Temporal Representation of Entities with Timescale a time-series SQL 

database. Mintaka is the component used to manage temporal queries. 

• Scorpio is an NGSI-LD compliant context broker developed by NEC Laboratories Europe and NEC 

Technologies India. Scorpio is developed in Java but there are two different versions of Scorpio, one 

is built with Spring Boot and another one with Quarkus. Both versions are built with Apache Maven. 

Scorpio works with Apache Kafka as message bus and PostgreSQL with PostGisextension to store 

context and historic data. Scorpio allows to create distributed and federated deployment of various 

context brokers. 

• Stellio is an NGSI-LD compliant context broker developed by EGM. It is developed in Kotlin with 

Spring Boot framework, and it is built with Gradle. Stellio is composed of three main services: search 

service, subscription service and API gateway. It uses a Kafka component as message bus and a 

TimescaleDB to store context and historic data. 

To be able to choose between these brokers, some load tests have been made to compare the brokers 

performance depending on the number of entities in the broker. 

The deliverable 4.3 contain the advance criteria to make the decision depending on the needs of the use cases.  

2.4.2 NGSI-LDES  

The NGSI-LDES component acts as a scalable data synchronization/exchange interface that publishes one or 

more Linked Data Event Streams (LDES) from NGSI-LD compliant context brokers. LDES defines a 

hypermedia-based Web API that provides access to immutable and semantically annotated data subsets 

https://github.com/TREEcg/ngsi-ldes


 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 19 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

containing the (historical) state of a certain data collection. For example, it can be used to read the latest state 

of a bicycle sharing station but also allows to query for previous states of that same station, as reported in the 

past. 

To allow for efficient and scalable data access, an LDES defines a certain logical data structure that ensures 

that historical data records, which will not change any further, are served as immutable resources (in terms of 

HTTP caching), lowering the cost for serving historical data and thus improving scalability. Multiple logical 

data structures can be implemented for an LDES, (e.g., linked lists, b-trees, skip lists, etc.). The choice is 

made at design time and largely depends on the underlying data sources and their querying capabilities. In the 

context of GreenMov, a b-tree like hierarchical data structure was chosen, which is supported by the temporal 

querying interfaces of NGSI-LD context brokers. Each node in the tree represents aggregated time windows 

of a certain granularity (e.g., week, day, hour, etc.). Such design allows the LDES to behave as a virtualized 

view over the data that is hosted in a context broker, i.e., the data does not need to be duplicated anywhere 

else, and also lowers the cost for historical queries, since historical fragments only need to be request to the 

context broker once and be served from cache onward. 

In terms of data content, the NGSI-LDES module produces an independent LDES stream for every entity type 

that can be found within a NGSI-LD context broker. Each LDES will continuously produce versioned 

members (as in LDES/TREE notation) which will contain links to the respective (versioned) entities which are 

defined in correspondence to the specific (smart) data model used by the context broker. 

Additionally, the NGSI-LDES component leverages the NGSI-LD types of interfaces of a context broker to 

automatically generate a compliant DCAT metadata catalog. 

NGSI-LDES is available as open source on GitHub [7].  

2.4.3 IoT Agents 

The IoT agents gather information from specific IoT sensors and transfer them into the main components of 

the platform. These are identified as potentially usable across the platform depending not only on the existing 

sensor but on other that could be included during execution of the project and beyond. 

• IoT Agent for JSON [8] - a bridge between HTTP/MQTT messaging (with a JSON payload) and 

NGSI/NGSI-LD. 

• IoT Agent for LWM2M [9] a bridge between the Lightweight M2M protocol and NGSI/NGSI-LD 

• IoT Agent for Ultralight [10] - a bridge between HTTP/MQTT messaging (with an UltraLight2.0 

payload) and NGSI/NGSI-LD 

• IoT Agent for LoRaWAN [11]  - a bridge between the LoRaWAN protocol and NGSI/NGSI-LD 

• IoT Agent for Sigfox [12] - a bridge between the Sigfox protocol and NGSI/NGSI-LD 

• IoT Agent Library [13]  - library for developing your own IoT Agent, almost all the IoT Agents are 

using this library to develop their concrete bridge between legacy systems and NGSI/NGSI-LD. 

https://en.wikipedia.org/wiki/Linked_list
https://en.wikipedia.org/wiki/B-tree#:~:text=In computer science%2C a B,with more than two children.
https://en.wikipedia.org/wiki/Skip_list
https://treecg.github.io/specification/#member


 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 20 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

2.5 Persistence components of the reference architecture  

2.5.1 Cygnus-LD 

The Cygnus-LD [14] Generic Enabler enables the persistence of historical context data through the creation of 

data streams and can be injected into multiple data sinks, including many popular databases such as 

PostgreSQL, ArcGIS or public Open Data Platform like CKAN. Cygnus is based on Apache Flume. 

Potentially required when using Orion-LD because persistence in Scorpio is already available.  

• Data management: Cygnus-LD allows you to store and manage Linked Data in a way that is 

consistent with the Linked Data principles.  

• Data integration: Cygnus-LD provides tools for integrating Linked Data from different sources, such 

as databases and web services. This allows you to create a unified view of your data and to link 

related information from different sources. 

• Data interoperability: Cygnus-LD supports the Linked Data standards and protocols, allowing you to 

share data with other systems and applications that use Linked Data. This enables interoperability 

between different systems and makes it easier to build applications that use Linked Data. 

• Data privacy and security: Cygnus-LD provides tools for managing access to Linked Data, allowing 

you to control who can view and modify your data. This helps to ensure the privacy and security of 

your data. 

2.5.2 Other persistence components 

Although there are other persistence components for persistence in the FIWARE framework, Quantum Leap 

[15], Cosmos [16], there are not initially used by the use cases and therefore not included here. 

2.6 Security components 

2.6.1 Keycloak 

Keycloak is an open-source identity and access management solution. It helps organizations to secure their 

applications and services by providing a single point of access for authentication and authorization. Keycloak 

offers features such as user management, multi-factor authentication, and support for social login providers. It 

also integrates with other identity providers such as LDAP and Active Directory. Keycloak is written in Java 

and is available under the Apache License 2.0. 

It has these features: 

User management: Keycloak provides a centralized user management system, where you can manage users 

and their permissions. This includes features such as user registration, password policies, and account 

recovery. 

• Multi-factor authentication: Keycloak supports multiple authentication methods, such as OTPs, 

biometrics, and security questions. This allows you to set up a secure authentication system for your 

applications and services. 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 21 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

• Social login: Keycloak integrates with popular social login providers, such as Facebook and Google, 

allowing users to log in to your applications using their social media accounts. 

• Identity brokering: Keycloak can act as an identity broker, allowing users to log in to your 

applications using credentials from other identity providers, such as LDAP or Active Directory. 

• Single sign-on (SSO): Keycloak supports SSO, allowing users to log in to multiple applications with a 

single set of credentials. This makes it easier for users to access the applications they need, and it 

helps to improve security by reducing the number of passwords that users need to remember. 

2.6.2 Keyrock 

The Keyrock [16] Generic Enabler acts as the Identity Management component and provides secure and 

private authentication, basic authorization, and identity federation for applications. It plays a crucial role in 

ensuring security within the FIWARE System of Systems architecture. The Keyrock component includes tools 

for administrators to manage user life cycle functions. It complements some aspects of the previous Keycloak 

component and serves as an alternative in others. 

2.6.3 Wilma 

Wilma serves as the standard implementation of a PDP due to its complete integration with the FIWARE 

ecosystem. It is designed to operate seamlessly with OAuth2 and XACML protocols, the authentication and 

authorization standards adopted by FIWARE. Moreover, every GE incorporates this component on top of 

their REST APIs, making it widely tested and utilized in diverse scenarios. 

2.6.4 Authzforce 

Authzforce is the GE that provides with the reference implementation of the Authorization PDP Generic 

Enabler (previously known as Access Control GE). As per the GE specification, this implementation offers an 

API that enables you to obtain authorization decisions based on authorization policies and requests from 

PEPs. The API adheres to the REST architecture style and conforms to XACML v3.0. XACML, which stands 

for eXtensible Access Control Markup Language, is an OASIS standard used for authorization policy format 

and evaluation logic, as well as for the request/response format for authorization decisions. The XACML 

standard defines the terms PDP (Policy Decision Point) and PEP (Policy Enforcement Point). This GE 

reference implementation acts as a PDP. 

To comply with the XACML architecture, you may require a PEP (Policy Enforcement Point) to safeguard 

your application, which is not included in this implementation.  

2.7 Other components 

2.7.1 Connection with open data portals 

This is a feature under discussion in the use cases. Anyhow information about the connector to transfer the 

data from the services to open data portals based on CKAN is included.  

The CKAN Extension. Publishing and consuming open data is a keystone for the development of applications 

and the creation of an innovation ecosystem. CKAN is one of the most extended Open Data publication 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 22 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

platforms and is becoming the de-facto standard for data publication in Europe. Moreover, CKAN is an open-

source platform which means it can be easily adapted and expanded and integrated into multiple use cases. 

The CKAN Extension [18] integrates CKAN solution with the FIWARE platform, enabling the right-time 

context information served by a FIWARE Context Broker and to be published as a dataset resource, making it 

easier to be discovered and consumed as Open Data content. Additionally, this extension allows the 

integration with FIWARE Security in order to enrich the access control and enable explicit acceptance of data 

terms and conditions, usage accounting, or data monetization.  



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 23 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

3 Deployment of the platform 

The deployment infrastructure must obey to some requirements: 

• Be easy to deploy by the technical teams of the pilot sites on their infrastructure. 

• Be responsive as the platform deals with near to real time data management and processing and users 

needs immediate feedback for decision making. 

• Be highly available as the platform deals with near to real time data management and processing and 

users need feedback at any time for decision taking. 

• Be scalable as more in more data and usages will come in and the platform must stay responsive and 

with the right performance over time. 

Such concerns are deeply tied to the global architecture of the platform and the components that are 

integrated. In this respect, it is very important that the platform and its components adhere totally to the 

Reactive Manifesto (See Annex III. Concepts), which defines the core principles that must be followed by any 

modern reactive architecture. 

Then, it has to be backed by a deployment platform that will bring the ease of deployment, and the tools to 

allow for high availability and scalability. 

Nowadays, Kubernetes is de-facto standard for such deployments: 

• Deployments can be formalized and automatized, especially via the use of Helm charts. 

• Integrated support for load balancing. 

• Integrated support for horizontal scaling. 

• Automatic restart of containers when a node dies or when a container does not respond to health 

checks. 

• Automatic placement of containers based on their requirements. 

Furthermore, it brings another important feature, by offering to progressively roll out changes to a deployed 

platform in production, while monitoring application health to ensure all the services are still up for end users. 

If something goes wrong, Kubernetes will roll back the changes (whether automatically or manually). This 

allows for advanced deployment strategies like Blue-Green deployment (See Blue-Green deployment), 

Canary deployments (Set Canary deployment), and so on. 

Finally, it is expected a tight integration between the CI/CD tool and the deployment platforms (whether 

production, integration, development, …). There exist tools (like JenkinsX) that permit such a seamless 

experience, they will be considered first (as long as well-known tools in this domain, like TravisCI or 

Bamboo). 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 24 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

3.1 Installation of the core context broker  

3.1.1 Installation of Orion-LD on MongoDB 

There is an extensive documentation on how to install Orion-LD on MongoDB. The installation  instructions 

are available for the base platforms [19]: 

• use a prebuilt docker image, or 

build Orion-LD from source code: 

• Ubuntu 18.04.3 LTS - the Official Distribution 

• Ubuntu 20.04.1 LTS 

• Ubuntu 22.04 LTS - no official instruction from MongoDb on how to install their DB  

Installation of Scorpio on PostgreSQL  

The installations instruction [20] recommends its installation based on docker compose, although it can also 

be installed based on the source code. The instructions also include a tutorial on how to install PostgreSQL 

(version 10). 

3.2 Persistence Components  

3.2.1 Installation of Cygnus 

FIWARE Cygnus is an open-source component of the FIWARE platform for the Internet of Things (IoT). It is 

a connector that allows for the storage and management of context information from IoT devices and sensors 

in different backends, such as databases, cloud storage systems, and data warehouses. Cygnus acts as a bridge 

between the IoT devices and the backend storage systems, enabling seamless and efficient data transfer and 

management. By using Cygnus, developers can easily store and manage context information from IoT 

devices, enabling the creation of advanced IoT applications. 

The installation of Cygnus demands a previous analysis of the different types of data sources to be ingested in 

the component. A large catalog of them is available including (not exhaustive list). The installation guide is 

available in its main page [21]. 

• Integration with REST interfaces 

• Databases 

o CartoDB 

o DynamoDB 

o ElasticSearch 

o MongoDB 

o MySQL 

o Oracle 

o PostGreSQL 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 25 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

• Big data resources 

o Kafka 

o HDFS 

• Other FIWARE components 

o Orion 

• Geographical systems 

o Arcgis 

o PostGIS 

3.3 Installation of security components 

3.3.1 Installation of  Keycloak 

Like most of the components it can be installed based on containers like dockers and Kubernetes. It requires 

the installation of JDK (i.e. OpenJDK) either docker or Kubernetes. and eventually Openshift when using 

Kubernetes. 

The official guide for the installation of Keycloak can be found in this reference [22]. 

3.3.2 Installation of Keyrock 

In order to be able to run Keyrock, it is needed to have previously installed the following software 

components: 

• Node.js and Node Packaged Modules. They are usually included within Node.js. 

• MySQL 

The standalone configuration requires to configure the port for providing service, the connection with the 

database and an initial population of the database. It also requires creating the session and encryption 

password.   

It is also possible to be installed by using a docker image [23]. 

The official guide for the installation of Keyrock can be found in this reference [24] 

3.3.3 Installation of Wilma 

Wilma requires to install these elements:  

• Node.js >= V8.x.x  

• npm >= 5.x.x.  

It can be installed from the source code or using a docker image.  

The official installation guide is found in this reference [25]. 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 26 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

3.3.4 Installation of Authzforce 

Authzforce is based on Java and therefore needs to get in the environment: 

• JRE 11 from OpenJDK  

• Tomcat 9.X 

It requires a special configuration of Tomcat, additionally other configuration parameters are required for its 

successful installation. The official installation guide can be found in this reference [26].  

3.4 Configuration of federated scenarios  

3.4.1 Types of deployments simple and advanced 

Federation of brokers is a feature specially developed in the version 1.6.1 of NGSI-LD standard (Aug.2022). 

This version also addresses some other evolution like the concise format, the representation of deleted entities 

and attributes in notifications, the temporal evolution and some conventions for using NGSI-LD for actuation 

(not only to gather information and answering about it but also to make other systems to act).  

Usually, the simple deployments typically are controlled by a single operator that can guarantee consistency. 

The size of the system only comprises some hundreds of entities. Also typically are used by a single 

application or a small set of applications and it can be handled by a single Context Broker / single database. 

However, in order to provide services to a full city this configuration is limited and therefore the advance 

deployments has to include the scalability for dealing with thousands or even millions of entities. It needs to 

be allowed the interaction of multiple independent operators. Besides this, they can have heterogeneous 

sources of overlapping information. In terms of access permission, it has to be ready to require that only some 

of the information is shared, and of course there will be many different applications with different access level 

permissions. In such deployments it is required that multiple context brokers interact with each other and the 

answer to the queries will need to gather information from multiples instances and to recombine globally.  

3.4.2 Advanced deployments 

NGSI-LD is a standard that enables distributed deployments by supporting multiple context sources. These 

sources can include full context brokers, IoT agents, or other entities that partially implement the NGSI-LD 

API. The context brokers can register with the context registry to specify the information they can provide. 

The context broker then accesses and aggregates the information from the context registry to return it to the 

requesting application. Furthermore, context brokers can themselves have other context brokers registered, 

allowing for the creation of hierarchical structures that reflect company or geographical structures. 

3.4.3 Federated deployments 

A federated deployment is a type of distributed deployment that allows applications to access context 

information from different sources, each running its own context broker. It is not technically different from 

other distributed scenarios, but the key difference is that it operates across administrative boundaries and lacks 

central control. In federated scenarios, the primary focus is typically on accessing and aggregating context 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 27 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

information from multiple context brokers, while the management of the information, such as creation, 

update, and deletion, is performed locally within each domain. 

In order to make compatible data for the same entity there is a new built-in sub attribute (datasetId) which 

depending on the source could help to make the difference. Additionally, scopes can help on filtering 

information coming from a group of sources.  

 

 

3.4.4 Multitenancy 

In contrast to a federated scenario, multitenancy involves running multiple services within a single instance of 

a context broker. In this setup, each user group is assigned to a specific tenant. The NGSI-LD 

implementations (such as Orion-LD, Stellio, Scorpio, etc.) may support multitenancy as an optional feature. 

To specify a tenant in an HTTP request, the "NGSILD-Tenant" header is used in the HTTP binding. 

The creation of tenants can occur implicitly, for example, when a tenant is first used in a create (entity, 

subscription, registration) operation. There are currently no API operations in NGSI-LD for explicitly creating 

or deleting tenants. If no tenant is specified, there is always a "default tenant" available. The implementation 

of tenants, including how isolation is achieved, is up to the specific implementation. Registrations can be 

targeted to a specific tenant, or if not specified, they will default to the "default tenant". If the same context 

source/broker needs to be registered for multiple tenants, multiple registrations are required. 

Figure 2: Scenario for broker federation 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 28 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

3.4.5 Distributed operation modes 

When multiple brokers are used they can be registered as data sources for others, and several options are 

available. 

 

Additive Registrations 

A Context Broker is permitted to hold context data about the Entities and Attributes locally itself, and also 

obtain data from (possibly multiple) external sources. 

Inclusive 

An inclusive Context Source Registration specifies that the Context Broker considers all registered Context 

Sources as equals and will distribute operations to those Context Sources even if relevant context data is 

available directly within the Context Broker itself (in which case, all results will be integrated in the final 

response). This is the default mode of operation. 

Auxiliary 

An auxiliary Context Source Registration never overrides data held directly within a Context Broker. 

Auxiliary distributed operations are limited to context information consumption operations. Context data from 

auxiliary context sources is only included if it is supplementary to the context data otherwise available to the 

Context Broker. 

Figure 3: Diagram for distributed operation modes 

Registration options

ProxiedAdditive

Inclusive
Auxiliary

InclusiveInclusive Exclusive
Redirect



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 29 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Proxied Registrations 

A Context Broker is not permitted to hold context data about the Entities and Attributes locally itself. All 

context data is obtained from the external registered sources. 

Exclusive 

An exclusive Context Source Registration specifies that all of the registered context data is held in a single 

location external to the Context Broker.  The Context Broker itself holds no data locally about the registered 

Attributes and no overlapping proxied Context Source Registrations shall be supported for the same 

combination of registered Attributes on the Entity. An exclusive registration must be fully specified. It always 

relates to specific Attributes found on a single Entity. 

Redirect 

A redirect Context Source Registration also specifies that the registered context data is held in a location 

external to the Context Broker, but potentially multiple distinct redirect registrations can apply at the same 

time.  

 

 

 

 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 30 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

4 Operation of the platform 

4.1 Operational aspects 

From the user requirements emerged some concerns related to the operational aspects of the platform in 

general, and to cybersecurity more specifically: 

• How to trust Open-Source software that is used and integrated into the platform? 

• How to deliver an operational, scalable and reactive platform? 

• How to ensure the platform stays safe and secure? 

• How to monitor the correct behavior of the platform? 

This section is organized as follows: Subsection 4.2. describes the quality and security processes to apply 

during the development, integration and deployment of components inside the FIWARE platform. Subsection 

4.3 describes the requirements for a deployment infrastructure that can handle current and future needs of 

users. Subsection 4.4 describes the security measures to apply to a production environment in operation. 

Subsection 4.5 describes the security measures to apply specifically to the communication with the legacy 

systems used by the pilot sites. Subsection 4.6 describes the operation support tools to deploy in order to 

ensure a correct monitoring of the platform. 

4.2 Secure code, from design to delivery 

The first concern relates to the trust and confidence that a user may have in a large platform composed from 

the development and integration of many Open-Source software and libraries. 

This is a legitimate concern, and the platform has to define and deploy all the necessary processes and tools in 

order to ensure the maximum level of security in the software delivery chain. 

Thus, we are proposing here a set of security practices to be applied from the design of a new piece of 

software to its delivery in production. 

A new term, Continuous Hacking, started to emerge recently to design this whole process of ensuring the 

security chain in software development and delivery. It is associated with the STRIDE acronym: Spoofing, 

Tampering, Repudiation, Information Disclosure, Denial of Service, Escalation. The techniques, processes 

and tools described below follow and address these security topics. 

4.3 Secure by design 

The first step in this process is to apply the “Secure by design” principles to all the software that is specifically 

developed in the scope of the GreenMov project. Even considering that most of the software is already 

available as part of the FIWARE catalog. But the specific requirements of each pilot will comprise some 

development.  



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 31 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

It means that the security is considered from the design phase of the application and checked continuously via 

unit tests focused on security. For instance, if the application receives some user input, it implies to sanitize 

the data and remove any potential malicious characters. 

For this, a minimal and recommended practice is to follow the Open Web Application Security Project 

(OWASP) top 10 most critical web applications security risks that directly apply to the phase of code design. 

To help in these tasks, it would be assessed if it would be necessary to proceed with a static analysis security 

testing (SAST). A very valuable starting point is the community list of such existing tools that is maintained 

by the OWASP. What’s more, it is expected that the selected tool cover at least the following topics: 

• Support a rich variety of languages, and at least all the languages used in the components of the 

platform. 

• Detect the security vulnerabilities 

• Integrate seamlessly in a CI/CD chain 

4.4 Dependencies scanning 

Nowadays, a typical application or microservice in production has 80% of its source code coming from 

integrated third-party libraries (which in turn have their own dependencies and so on and so forth). This 

general principle also applies to the components of the FIWARE catalog. 

It is thus very important to integrate a dependency scanning process in order to detect as soon as possible a 

security vulnerability introduced by one of these third-party libraries. What’s more, to be effective, it has to be 

integrated into the whole software development life cycle: new source code added, deployment pipeline, 

external contributions received via a pull request, ... 

As of now, some tools have been identified for a careful evaluation (but larger research will be conducted): 

• Dependabot, a service provided by GitHub. 

• Integrated security alerts in GitHub projects, as recently made available by GitHub. 

• Snyk. 

To be valuable, the security scanning of dependencies has to be part of an automated and continuous process, 

with automatic fixes (or suggestions for fixes at least, via pull request for instance) as much as possible. Thus, 

it has to be run automatically on a regular basis (for instance, on each pull request, on each commit on the 

main branches, ...) and to be followed by immediate actions when this is possible (for instance, a deployment 

of the platform in production if a critical vulnerability has just been fixed). 

4.5 DevSecOps 

DevSecOps is an extension of the now classical DevOps paradigm. This term is used to emphasize that 

security must be a core part of the software delivery chain and thus must be deeply integrated into the 

continuous integration and continuous deployment pipelines. 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 32 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

For the continuous integration pipeline, it implies at least to cover the following topics: 

• Run static analysis security testing. 

• Run security focused unit tests. 

• Scan for the security of dependencies. 

• Secure the Docker containers. 

The first three points being covered above, the following will specifically address the Docker containers 

security.  GreenMov developers will assess if such devsecops would be required for the current integration.  

Docker security 

The Docker containers security is a large topic by itself. Docker technology is something relatively new, but 

very largely widespread. Unfortunately, the security aspect of the containers has not been really addressed 

from the beginning and there is now a large surface left for attacks. A lot has been done in the past months and 

there are now mature tools and practices to help in dealing with security in a containerized world. This 

security field is improving and extending every day, as emphasized for instance by the recent announcement 

of a partnership between Snyk and Docker to improve the overall security of Docker containers and integrate 

this concern at the heart of a software delivery chain. 

The Docker containers security can be roughly divided into: 

• Container creation best practices 

A lot of practices have emerged recently in this field. They range from best practices at the creation time of a 

container, to the need to run Docker containers as a non-root user.   

These practices will be thoroughly studied and integrated when wiring up the Docker containers composing 

the GreenMov platform. 

Complementary to this, tools that help in checking and enforcing these best practices will be used when it is 

possible to automate the checking (for instance, a tool like Docker Bench Security 

(https://github.com/docker/docker-bench-security)  may be of great value). 

Also, new emerging techniques like Buildpacks (https://buildpacks.io/) from the Cloud Native Computing 

Foundation will be considered seriously. Indeed, they provide a higher level of abstraction for building apps 

compared to Dockerfiles and thus bring a new experience into bridging the gap between the source and the 

Docker packaging of an application and applying best of breed practices in modern container standards. It also 

ensures that applications meet security and compliance requirements without developer intervention. 

• Container security scanning 

As of now, some tools have been identified but larger research will be conducted before a final choice: Clair 

and MicroScanner. 

• Image signing 

https://github.com/docker/docker-bench-security
https://buildpacks.io/


 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 33 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

In order to bring confidence in the images used, Docker provides tools and practices to apply and check image 

signing, as it is for instance already done in packages distributed on Linux distributions. Such image signing 

will be applied to each image produced by the platform. 

For the continuous deployment pipeline, it implies at least to cover the following topics: 

• Dynamic analysis security testing (DAST) 

In the same way that a static security analysis is performed on the source code during the continuous 

integration phase, a dynamic security analysis is potentially an option to be adopted at GreenMov 

developments during the continuous deployment one. 

This time, the analysis is performed on the running platform, typically deployed in a dedicated environment, 

but with a security configuration that has to be the same as the production environment. 

For this specific task, different existing Open-Source tools will be evaluated, and a choice will be made for a 

proven mature solution. Once again, the OWASP site lists some mature solutions and a tool like Zaproxy, also 

known as OWASP ZAP,  has already been identified as a valid candidate. 

• Penetration testing 

Another very valuable and critical kind of testing is penetration testing. This is in particular a critical point to 

be addressed for a smart city management platform that may be subject to cyberattacks, due to the potentially 

sensitive nature of the underlying infrastructure. 

This is a specific field that is well covered and understood. There already exists tools and procedures that will 

be applied on the platform to be deployed. Security assessment tools, like the aforementioned Zaproxy, can 

also be used to help and ensure the platform meets the expected security requirements. 

• Chaos engineering 

Chaos engineering is quite a new field, not directly related to the platform security, but more to the resilience 

of the platform. 

It has gained a lot of popularity some years ago when Netflix released the now famous Chaos Monkey project. 

Aimed at running against a production platform, it tries to “inject” some abnormal behavior inside the 

platform (network outage, application failures, …) in the objective to test the application resilience against a 

bunch of different external or internal factors. Due to the potential criticality of the software that is going to be 

deployed on the GreenMov platform, this is an aspect to be considered. 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 34 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

5 Data Architecture 

This section has the same contents as the equivalent section in deliverable 4.1 because there has not been 

relevant changes during the period between release of the deliverable 4.1 and 4.2.  It could be omitted but it is 

included here just for making the deliverable 4.2 more self-contained.   

5.1 Data Storage architecture and technical format  

As long as NGSI-LD is the chosen common standard within GreenMov services and components for 

interchanging information between the main systems (but for the sensors) the common standard for document 

sharing and eventually for some of the data storage will be JSON (and specifically JSON-LD). 

 

Figure 4: Entity and attributes 

 

 

 

 
 

{ 
“id”: ”ngsi-ld:BUS:001”,  
“type”: “Bus” 
“location”: [215, 33.4], 
“driver”: ”ngsi-ld:DRIVER:002”, 
“licensePlate”: “4536KVM” 

} 

 

 

 

{ 
“id”: ”ngsi-ld:BUS:001”,  
“type”: “Bus” 
“location”: [215, 33.4], 
“driver”: ”ngsi-ld:DRIVER:002”, 
“licensePlate”: “4536KVM” 

} 

 

 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 35 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

The entity1 could be represented in JSON payload this way. 

The information will be split into elements named entities that can be a single JSON payload. the payload is a 

series of keywords (attributes) and a attached value that can be a single value (e.g. string , data-time, number) 

or complex values like an array or a more complex object. These entities have a unique attribute, the identifier 

or ‘id’, that allows to reference them uniquely, and another attribute, the type, which determines their class. 

Entities belonging to the same class can have different internal structures because do not need to have proper 

values for all the attributes These elements can include references to other elements store across the different 

systems. 

5.2 Basic data classes / entities 

Although the different pilots would share the same technical architecture there would be quite limitation if 

they do not share the data structures. Thus, in activity 2 a set of shared data models have been defined so 

every entity can be shared between the different pilots.  

The full list of entities is defined in deliverable 2.2, section chapter 4 Data Models for GreenMov use cases. 

Here is just the plain list of those data entities created explicitly for GreenMov project. 

• AirQualityForecast. A forecast of air quality conditions valid during a period 

• BicycleParkingStation. Bicycle Parking Station Schema meeting Passenger Transport Hubs AP 

Schema specification 

• BicycleParkingStationForecast. Bicycle Parking Station Schema meeting Passenger Transport Hubs 

AP Schema specification 

• NoiseLevelObserved. An observation of those acoustic parameters that estimate noise pressure levels 

at a certain place and time. 

• NoisePollutionForecast. Noise Pollution forecast stores the expectation about noise pollution based on 

some input elements and the noise elements present. 

• ResourceReport. Resource Report Schema meeting Passenger Transport Hubs AP Schema 

specification. A summary of resources connected to mobility services based on defined filters by the 

person requesting the report. 

• ResourceReportForecast. Resource Report Forecast Schema meeting Passenger Transport Hubs AP 

Schema specification. A summary of the expectations of the resources connected to mobility services 

based on defined filters by the person requesting the report. 

 

1 This entity is described here only for explanatory purposes, and it does not correspond with any of the real 

ones in the use cases. worth to be noted that the value for the attribute driver can be the pointer to a different 

entity of the type of drive with their own attributes, allowing to create relationships between the entities stored 

in the context broker 

https://github.com/smart-data-models/dataModel.Environment/tree/master/AirQualityForecast
https://github.com/smart-data-models/dataModel.OSLO/tree/master/BicycleParkingStation
https://github.com/smart-data-models/dataModel.OSLO/tree/master/BicycleParkingStationForecast
https://github.com/smart-data-models/dataModel.Environment/blob/master/NoiseLevelObserved/README.md
https://github.com/smart-data-models/dataModel.Environment/blob/master/NoisePollutionForecast/README.md
https://github.com/smart-data-models/dataModel.Environment/blob/master/NoisePollutionForecast/README.md
https://github.com/smart-data-models/dataModel.Environment/blob/master/NoisePollutionForecast/README.md
https://github.com/smart-data-models/dataModel.OSLO/blob/master/ResourceReport/README.md
https://github.com/smart-data-models/dataModel.OSLO/tree/master/ResourceReportForecast


 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 36 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

• TrafficEnvironmentImpact. Environmental Impact of traffic based on the vehicles traffic and their 

emission characteristics 

• TrafficEnvironmentImpactForecast. Environmental Impact of traffic based on the vehicles traffic 

expectations and their emission characteristics 

 

https://github.com/smart-data-models/dataModel.Environment/tree/master/TrafficEnvironmentImpact
https://github.com/smart-data-models/dataModel.Environment/tree/master/TrafficEnvironmentImpactForecast


 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 37 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

6 Conclusions 

This document provides general guidance for designing and deploying the technical reference architecture of 

the GreenMov Project use cases. The reference architecture outlined here will enable the use cases to meet 

current project needs and adapt to future requirements. A more in-depth analysis of system scalability is 

included in deliverable 4.3.  

The reference architecture offers a comprehensive description of the components, based on the existing 

reference architecture for smart cities by the FIWARE community, with modifications to fit the GreenMov 

use cases. The document also includes instructions for installation, with links to more information about each 

component in different sections. 

It's worth mentioning that some components have been added, such as the LDES integration, while others are 

not currently necessary for the use cases but may be useful in the future. This component could result in a 

candidate to a generic enabler, as new component, for the FIWARE community.  

Further guidance is provided in chapters 3 and 4 on how to deploy and operate the components, with a 

separate sub-chapter dedicated to security. Some deployment details are located in the annexes to keep this 

chapter brief. The different options for deploying a network of brokers to retrieve information are also 

discussed. 

The data architecture is only briefly outlined, as the details about the entities containing information are part 

of Activity 2's scope, and only the new entities created for the project are listed. As mentioned previously, one 

outcome of the project may result in the creation of a specific generic enabler for sustainable mobility. A 

generic enabler is an open-source software component validated by the FIWARE Foundation as part of the 

global framework. Consequently, the requirements for becoming such a component are also included in the 

annexes. 

  



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 38 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

7 References 

[1] https://github.com/telefonicaid/fiware-orion 

[2] https://github.com/FIWARE/context.Orion-LD 

[3] https://github.com/ScorpioBroker/ScorpioBroker 

[4] [1]  https://github.com/stellio-hub/stellio-context-broker 

[5] [1]  https://www.etsi.org/committee/cim 

[6] According to Gartner, referenced by https://www.linkedin.com/pulse/what-context-brokers-

alvaro-martin/ A context broker is a service that is designed to  gather reachable context data of a 

variety of types, sources and velocity. It then applies conditioning, integration, rules and analytics 

to derive the reduced prepared context data, actionable at a point of business decision by a system 

or a human  

[7] https://github.com/TREEcg/ngsi-ldes 

[8] https://github.com/telefonicaid/iotagent-json 

[9] https://github.com/telefonicaid/lightweightm2m-iotagent 

[10] https://github.com/telefonicaid/iotagent-ul 

[11] https://github.com/Atos-Research-and-Innovation/IoTagent-LoRaWAN 

[12] https://github.com/telefonicaid/sigfox-iotagent 

[13] https://github.com/telefonicaid/iotagent-node-lib 

[14] https://github.com/telefonicaid/fiware-cygnus 

[15] ]https://quantumleap.readthedocs.io/en/latest/  

[16] https://github.com/ging/fiware-cosmos  

[17] https://fiware-idm.readthedocs.io/en/latest/ 

[18] https://github.com/conwetlab/FIWARE-CKAN-Extensions 

[19] https://github.com/FIWARE/context.Orion-LD/blob/develop/doc/manuals-ld/installation-

guide.md 

[20] https://scorpio.readthedocs.io/_/downloads/en/stable/pdf/ 

[21] https://fiware-cygnus.readthedocs.io/en/latest/cygnus-ngsi-ld/quick_start_guide.html 

[22] https://www.keycloak.org/docs/16.1/server_installation/ 

[23] https://github.com/ging/fiware-idm/tree/master/extras/docker 

[24] https://fiware-

idm.readthedocs.io/en/latest/installation_and_administration_guide/installation/index.html 

[25] https://fiware-pep-proxy.readthedocs.io/en/latest/ 

[26] https://authzforce-ce-fiware.readthedocs.io/en/latest/InstallationAndAdministrationGuide.html 

https://www.etsi.org/committee/cim
https://www.linkedin.com/pulse/what-context-brokers-alvaro-martin/
https://www.linkedin.com/pulse/what-context-brokers-alvaro-martin/
https://github.com/TREEcg/ngsi-ldes
https://github.com/telefonicaid/iotagent-json
https://github.com/telefonicaid/lightweightm2m-iotagent
https://github.com/telefonicaid/iotagent-ul
https://github.com/Atos-Research-and-Innovation/IoTagent-LoRaWAN
https://github.com/telefonicaid/sigfox-iotagent
https://github.com/telefonicaid/iotagent-node-lib
https://github.com/telefonicaid/fiware-cygnus
https://quantumleap.readthedocs.io/en/latest/
https://github.com/ging/fiware-cosmos
https://github.com/conwetlab/FIWARE-CKAN-Extensions


 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 39 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

[27] https://fiware-requirements.readthedocs.io/en/latest/ 

[28] https://fiware-requirements.readthedocs.io/en/latest/development/index.html#documentation 

[29] https://readthedocs.org/ 

[30] https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet 

[31] https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst 

[32] https://bestpractices.coreinfrastructure.org/en/signup 

[33] https://openssf.org/ 

[34] https://github.com/OAI/OpenAPI-Specification 

[35] https://github.com/FIWARE-Ops/marinera 

[36] https://fiwaretourguide.readthedocs.io/en/latest/security/introduction/ 

 

https://fiwaretourguide.readthedocs.io/en/latest/security/introduction/


 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 40 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Annex I. Requirements for a generic enabler  

The official site for the complete list of requirements and the process to achieve it is available at the FIWARE 

site [27]. Main ones are summarized in the coming sections. 

Licensing and open SSF Best practices signature 

Every Generic Enabler MUST comply with the Licensing and IPR Management requirements. Summarizing.  

• The source code of the product MUST be licensed under one of the well-recognized open source 

licenses approved by the Open Source Initiative. 

• The open-source license under which source code of the product is licensed MUST be clearly 

mentioned in a first-level section of the README.md file included in the main GitHub repository. 

• When using a copyleft open-source license, a specific explanatory paragraph of legal opinion MUST 

be added in the section where the open-source license is mentioned 

• The legal opinion paragraph above SHOULD be accompanying the text describing the adopted open-

source license in the headers of all source code files for the product. 

• Every enabler MUST be open to third party contributions. All offered contributions MUST be 

reviewed within a "reasonable" time frame. 

• There MUST be a document (CONTRIBUTING.md guidelines) clearly describing the terms under 

which the IPR of contributions to the source code of the product will be managed. Such document 

MUST be made accessible in (or map to) a first-level section of the README.md file included in the 

associated GitHub repositories. 

• The CONTRIBUTING.md guidelines MUST include the template of the Contribution License 

Agreement for individuals and entities contributing code to the component. As a reference for 

producing these templates, the following templates derived from the Harmony Agreements project are 

provided: 

o Individual CLA 

o Entity CLA 

• When using a copyleft open-source license, IPR Management rules for contributions MUST include 

clauses as follows: 

o There should be at least one organization which can exercise IPRs on the whole software. 

o There is a commitment to transfer to the FIWARE Foundation the IPRs on the whole 

software in case that the software is no longer supported by the organization(s) that currently 

own(s) IPR on the whole software. 

https://fiware-requirements.readthedocs.io/en/latest/GE_Requirements/#licensing-and-ipr-management
https://opensource.org/licenses/alphabetical
https://opensource.org/licenses/alphabetical
https://fiware.github.io/contribution-requirements/individual-cla.pdf
https://fiware.github.io/contribution-requirements/entity-cla.pdf


 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 41 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

General requirements   

 A FIWARE Generic Enabler MUST fit well in the architecture of a “Powered by FIWARE” solution: 

• Integrate well with architectures where context management is cornerstone and addressed using 

FIWARE NGSI (currently FIWARE NGSIv2, compliant with ETSI NGSI-LD in the future). 

• Be able to fit within one of the defined FIWARE chapters. 

Code control tool requirements and public backlog 

GitHub and GitHub Issue tracking MUST be used. 

Documentation requirements  

A generic enabler to be accepted needs to have accurate, current Documentation MUST be available on Read 

the Docs and as GitHub content. To guarantee that documentation is of high quality, development related 

documents MUST be peer-reviewed, and QA verified. See Documentation Guidelines [28] for the best 

documentation practices. Should you want to benefit from automatic documentation generation systems, 

namely, Read the Docs [29], you MUST use an approved markup notation: 

• Markdown [30] is preferred for simple documents. 

• Restructuredtext [31] is an acceptable alternative for complex documentation. 

Development requirements  

Every Generic Enabler must sign-up to the OpenSSF Best Practices Badge Program [32] and display the 

badge. 

The Open-Source Security Foundation (OpenSSF) [33] Best Practices badge is a way for Free/Libre and Open 

Source Software (FLOSS) projects to show that they follow best practices. Projects can voluntarily self-

certify, at no cost, by using this web application to explain how they follow each best practice. API 

Specifications MUST be provided. Preferred format is OpenAPI1, a.k.a. Swagger, format. 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 42 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Annex II. An example of configuration 

Further information can be found in the repository of Marinera [35] 

How to setup 

When following all described steps, the resulting cluster will be a fully working copy of the Kubernetes 

Clusters, operated by the FIWARE Foundation. If a cluster is already available, you can skip the steps that are 

already fulfilled. Be aware that this might require changes to the following steps, depending on the degree of 

deviation from the proposed setup. 

1. Prepare AWS account 

2. Install OpenShift cluster 

3. Install certificates 

4. Install ArgoCD 

5. Prepare ArgoCD for namespaced deployments 

6. Deploy namespaces 

7. Deploy bitnami/sealed-secrets 

8. Create secrets 

9. Deploy MongoDB 

10. Deploy Orion-LD 

 For a better understanding of the process, all application-deployments(starting at step 6.) are executed 

through the ArgoCD-UI. However, all of them also can be done through the argocd-cli. See the cli-installation 

documentation for that. 

1. Prepare AWS account 

In order to use the OpenShift installers, provided by RedHat, an AWS account is required: 

https://aws.amazon.comThe account needs to be prepared, following the steps described in OpenShift - 

configure AWS account. 

2. Install OpenShift cluster 

The process of creating an OpenShift cluster at AWS is described in the OpenShift documentation: 

https://docs.openshift.com/container-platform/4.7/installing/installing_aws/installing-aws-

default.html#installing-aws-defaultChoose the right method for the used operating system and carefully 

follow the instructions. 

https://github.com/FIWARE-Ops/fiware-gitops#1-prepare-aws-account
https://github.com/FIWARE-Ops/fiware-gitops#2-install-openshift-cluster
https://github.com/FIWARE-Ops/fiware-gitops#3-install-certificates
https://github.com/FIWARE-Ops/fiware-gitops#4-install-argocd
https://github.com/FIWARE-Ops/fiware-gitops#5-prepare-argocd-for-namespaced-deployments
https://github.com/FIWARE-Ops/fiware-gitops#6-deploy-namespaces
https://github.com/FIWARE-Ops/fiware-gitops#7-deploy-bitnamisealed-secretshttpsgithubcombitnami-labssealed-secrets
https://github.com/FIWARE-Ops/fiware-gitops#8-create-secrets
https://github.com/FIWARE-Ops/fiware-gitops#9-deploy-mongodb
https://github.com/FIWARE-Ops/fiware-gitops#10-deploy-orion-ld


 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 43 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

3. Install certificates 

In order to have proper certificates available for the cluster, we are using Let's encrypt to generate our cluster 

certificates. 

 The following method requires an existing connection to the OpenShift cluster. If you followed the 

previous steps, this should already exist. If not, install the OpenShift-client and login to the cluster as 

described in theOpenShift-CLI documentation. Check the connection via oc whoami --show-server, the url 

should match with the cluster you want to use. 

 The following steps describe certificate generation for AWS installations. For other cloud-providers, 

check the options in the acme.sh repo&documentation 

 Clone the acme.sh github-repo 

cd$HOME git clone https://github.com/acmesh-official/acme.sh 

 Setup AWS credentials 

The acme.sh client requires access to AWS Route53. Create and (locally) store your credentials following the 

documentation. Create environment variables to be used by the client via: 

export AWS_ACCESS_KEY_ID=<KEY_ID_OBTAINED_FROM_AWS>export 

AWS_SECRET_ACCESS_KEY=<SECRET_OBTAINED_FROM_AWS> 

 Obtain certificates 

# export information from the cluster, to be used by the acme-clientexport LE_API=$(oc whoami --show-

server | cut -f 2 -d ':'| cut -f 3 -d '/'| sed 's/-api././')export LE_WILDCARD=$(oc get ingresscontroller default -n 

openshift-ingress-operator -o jsonpath='{.status.domain}')# run acme-client for 

aws${HOME}/acme.sh/acme.sh --issue -d ${LE_API} -d *.${LE_WILDCARD} --dns dns_aws #export 

CERTDIR=$HOME/certificates mkdir -p ${CERTDIR}${HOME}/acme.sh/acme.sh --install-cert -d 

${LE_API} -d *.${LE_WILDCARD} --cert-file ${CERTDIR}/cert.pem --key-file ${CERTDIR}/key.pem --

fullchain-file ${CERTDIR}/fullchain.pem --ca-file ${CERTDIR}/ca.cer 

 Create the secrets 

# create secret for default ingress-controller oc create secret tls router-certs --

cert=${CERTDIR}/fullchain.pem --key=${CERTDIR}/key.pem -n openshift-ingress # create secret for the 

api-server oc create secret tls api-certs --cert=${CERTDIR}/fullchain.pem --key=${CERTDIR}/key.pem -n 

openshift-config 

 Patch ingress-controller and api-server 

# patch ingress controller oc patch ingresscontroller default -n openshift-ingress-operator --type=merge --

patch='{"spec": { "defaultCertificate": { "name": "router-certs" }}}'# patch api-server oc patch apiserver 

cluster --type merge --patch="{\"spec\": {\"servingCerts\": {\"namedCertificates\": [ { \"names\": [ 

\"$LE_API\" ], \"servingCertificate\": {\"name\": \"api-certs\" }}]}}}" 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 44 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 Update kubeconfig 

The kubeconfig, generated in the installation process of OpenShift, contains a CA for the self-signed 

certificate generated by OpenShift. This will result in certificate errors when connecting the cluster. Since the 

Let's encrypt certificate is already trusted, we can remove the CA and use the already installed certs. The 

kubeconfig is located in the folder created during the cluster setup a look similar to: 

vi <INSTALLATION_FOLDER>/auth/kubeconfi apiVersion: v1 clusters: - cluster: certificate-authority-data: 

<BASE_64_ENCODED_CA> server: https://api.fiware-dev-aws.fiware.dev:6443 name: api-fiware-dev-aws-

fiware-dev:6443 ..... 

The certificate-authority-data entry can simply be removed. 

Verify success 

# check api-server certificate curl -X GET --silent -vvI $(oc whoami --show-server)2>&1| grep issuer # check 

ingress-controller curl -X GET --silent -vvI https://$(oc get routes console -n openshift-console -o json | jq -r 

'.spec.host')2>&1| grep issuer # both requests should result in something like:* issuer: C=US; O=Let's 

Encrypt; CN=R3 

A more detailed explanation of the process can be found at the RedHat Blog. Be aware that the described 

process does not automatically renew the certificates (yet). 

4. Install ArgoCD 

The only component that needs to be directly installed to the cluster is ArgoCD. 

Create namespace 

In order to separate concerns inside the cluster, we create a namespace/project for ArgoCD to live in: 

# namespace creation via kubectl, alternatively `oc new-project argocd' would have the same effect kubectl 

create namespace argocd 

Install ArgoCD operator 

In order to install ArgoCD, OpenShift comes with a Community Operator for ArgoCD. To install it, go to the 

OpenShift console(https://$(oc get routes console -n openshift-console -o json | jq -r '.spec.host')) and navigate 

to the OperatorHub: 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 45 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 

Search for ArgoCD and follow the installation instructions. Use the "A specific namespace of the cluster" 

option and choose the namespace created in the previous step("argocd"). 

 

Wait for the operator to be installed. 

Deploy an instance of ArgoCD 

To have a working instance of ArgoCD, we need to instruct the Operator to install one. A definition of our 

ArgoCD object can be found in the repo under argocd.yaml. Deploy it via: 

Figure 9: Argo console configuration 

 

Figure 5: Argo console installation 

 

Figure 6: Argo console installation 

 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 46 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 kubectl apply -f argocd.yaml -n argocd 

After a couple of seconds(probably less than 60), ArgoCD should be available at kubectl get routes -n argocd -

o json | jq -r '.items[0].spec.host' 

 

5. Prepare ArgoCD for namespaced deployments 

Due to permission restrictions, we need to setup ArgoCD with enough permissions to handle cluster wide 

deployments. 

1. Install the ArgoCD-Client 

2. Login with the client: 

 argocd login --sso $(kubectl get routes -n argocd -o json | jq -r '.items[0].spec.host') 

3. Show available clusters 

 argocd cluster add 

4. Add the cluster 'letsencrypt/<CLUSTER_ADDRESS>/system:admin 

 argocd cluster add letsencrypt/<CLUSTER_ADDRESS>/system:admin 

5. Verify the cluster was added 

 argocd cluster list # result should look similar to SERVER NAME VERSION STATUS https://api.fiware-

dev-aws.fiware.dev:6443 letsencrypt/api-fiware-dev-aws-fiware-dev:6443/system:admin 1.22 Successful 

https://kubernetes.default.svc (1 namespaces) in-cluster Unknown  

Alternative: 

Figure 13: Argo deployment screen 

 

Figure 14: Argo deployment screen 

 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 47 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

If you want to use the in-cluster api via 'https://kubernetes.default.svc', the operator-subscription can be 

configured to allow namespaced-installations cluster-wide permissions: 

 kubectl edit subscriptions -n argocd 

 in case you have multiple subscriptions inside the argocd namespace, make sure to edit the correct one. 

apiVersion: v1items: - apiVersion: operators.coreos.com/v1alpha1kind: Subscriptionmetadata: ...name: 

argocd-operatornamespace: argocd...spec: channel: alpha## add this configconfig: env: - name: 

ARGOCD_CLUSTER_CONFIG_NAMESPACESvalue: argocd##installPlanApproval: Automaticname: 

argocd-operatorsource: community-operatorssourceNamespace: openshift-marketplacestartingCSV: argocd-

operator.v0.2.0 

With this configuration, the operator considers the namespace argocdas one of argoCD's cluster-wide 

installation namespaces and (within a couple of seconds) upgrades the in-cluster-cluster to handle all 

namespaces: 

 

6. Deploy namespaces 

Since we want to properly separate the workloads in our cluster, we need to manage namespaces. Following 

git-ops, we will put the namespace-definitions into a repository and let ArgoCD create them for us. 

 The following documentation uses the UI to deploy the applications. The same can be achieved via the 

argocd-cli. 

1. Login to ArgoCD 

Open kubectl get routes -n argocd -o json | jq -r '.items[0].spec.host' in the browser 

2. Click on "NEW APP" 

Figure 17: Argo namespaces configuration 

 

Figure 18: Argo namespaces configuration 

 

Figure 19: Argo namespaces configuration 

 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 48 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 

3. Fill out the form 

 

 General:  

-> Application name: namespaces  

-> Project: default  

-> Sync Policy: automatic  

Source:  

-> Repository URL: https://github.com/FIWARE-Ops/fiware-gitops  

-> Path: aws/sealed-secrets Destination:  

-> Cluster URL: -- use the URL of the cluster added via argocd-cli  

Figure 25: Argo. Configuration of new app 

 

Figure 26: Argo. Configuration of new app 

 

Figure 21: Argo. Creation of new app 

 

Figure 22: Argo. Creation of new app 

 

Figure 23: Argo. Creation of new app 

 

Figure 24: Argo. Creation of new app 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 49 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Click create and wait until its running: 

 

7. Deploy bitnami/sealed-secrets 

Using GitOps, means every deployed resource is represented in a git-repository. While this is not a problem 

for most resources, secrets need to be handled differently. We use the bitnami/sealed-secrets project for that. It 

uses asymmetric cryptography for creating secrets and only decrypt them inside the cluster. The sealed-secrets 

controller will be the first application deployed using ArgoCD. Since we want to use the Helm-Charts and 

keep the values inside our git-repository, we get the problem of ArgoCD only supporting values-files inside 

the same repository as the chart(as of now, there is an open PR to add that functionality -> PR#8322 ). In 

order to workaround that shortcomming, we are using "wrapper charts". A wrapper-chart does consist of a 

Chart.yaml with a dependency to the actual chart. Besides that, we have a values.yaml with our specific 

overrides. See the sealed-secrets folder as an example. 

1. Click on "NEW APP" 

 

2. Fill out the form 

Figure 33: Argo. Create new app 

 

Figure 34: Argo. Create new app 

 

Figure 35: Argo. Create new app 

 

Figure 29: Argo. Monitoring of app 

 

Figure 30: Argo. Monitoring of app 

 

Figure 31: Argo. Monitoring of app 

 

Figure 32: Argo. Monitoring of app 

https://argo-cd.readthedocs.io/en/stable/user-guide/helm/#values-files
https://argo-cd.readthedocs.io/en/stable/user-guide/helm/#values-files
https://helm.sh/docs/chart_template_guide/values_files/


 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 50 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 

 General:  

-> Application name: sealed-secrets  

-> Project: default  

-> Sync Policy: automatic  

Source:  

-> Repository URL: https://github.com/FIWARE-Ops/fiware-gitops  

-> Path: aws/sealed-secrets Destination:  

-> Cluster URL: -- use the URL of the cluster added via argocd-cli  

-> Namespace: sealed-secrets Helm: You can provide specific overrides, everything else will be taken from 

the values-file inside the repository(and thus automatically updated together with the repo). 

Figure 37: Argo. Creation of new app 

 

Figure 38: Argo. Creation of new app 

 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 51 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Click create and wait until its running: 

 

8. Create secrets 

The first applications to be deployed will be the Orion-LD Context Broker together with its MongoDB. In 

order to communicate in a secure way, the need to use a secret. We will create a secrets-application for our 

target namespace FIWARE and prepare the secrets via sealed-secrets. For your secrets to be secure, a different 

repository should be used. The secret-files inside this repository will only work with our cluster, since they 

can only be decrypted by the sealed-secrets controller they were created at. 

1. Create the manifest for the secret(mongodb-secret.yaml) to be used at mongodb(the data-entries need 

to follow the requirements of the target chart, e.g. bitnami/mongodb): 

apiVersion: v1 

kind: Secret 

metadata:  

# name of the secret 

name: mongodb-secret 

# namespace the secret should be deployed to - important, sealed-secrets will check the namespace before 

decryption 

namespace: fiware 

data:  

Figure 41: Argo. Monitoring of apps 

 

Figure 42: Argo. Monitoring of apps 

 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 52 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

# the actual data, needs to be base64 encoded 

mongodb-password: cGFzc3dvcmQ= 

mongodb-replica-set-key: cGFzc3dvcmQ= 

mongodb-root-password: cGFzc3dvcmQ=deploy orion-ld 

 Do never push this file to git. If it happens by accident, try not to remove it but replace all of them. 

Install kubeseal 

kubeseal is the client-side application for creating the sealed-secrets. Install it, following the official 

documentation 

Seal the secret 

The secrets now needs to be encrypted before put into git: 

# pipe the manifest into kubeseal. We need to specify the controller and its namespace, since we installed it 

out of its default location kubeseal <mongodb-secret.yaml >mongodb-sealed-secret.yaml -o yaml --controller-

namespace sealed-secrets --controller-name sealed-secrets 

The resulting "mongodb-sealed-secret.yaml" will look similar to: 

apiVersion: bitnami.com/v1alpha1 

kind: SealedSecret 

metadata:  

name: mongodb-secret 

namespace: fiware 

spec:  

encryptedData: 

mongodb-password: 

AgALc3Y7I6MhLszeRVbfyWnQVi0Jdjrozxyw1syAWRbIzAKsw8TkI1h+6zcUIp7v5U+/G3LZerTZoZyr61c

LXeoBNCXTPH5JDM9lhfFcvP2rOfyicEo7E8pAzfsqh9BflUcGhUJADajCtQVhvTonArt+xYsEx0TFs97/Q9

Vp1boj/GyO/vc/9Ly++hs29/Dh1W1QSyNXRs5glZKdGveVJCzQ4iZFf+V6aJfrXUpHNgZyNuMGzpPJlzy6

TpiqnKqu1RoiFCByVazeU5IRi13VAut4W/aFeCEWoaJZhHrWHLxaJWbSKzmR2Lpk48n7e4tBPjFvQPf3Ej

05qdrwTTwKo+TWkSU4DpY307NDO+k0DSOpq3SvZfEQYh3DPAj4grXfyHBXjz9mDmg3ZApztBdxwC

RRIG2Uh3DfY15AkYMWPkkqhisApPJdb8AWjydsEutxf7gc8MLRyYBRrKP7ewJjzGXOs3AGJMzoV3BA/

kK8madk9nyLQGIA0cff4MgTXDe1XCiBUeE/AOlbFe9Z/X/NDUc6P3HGhf6mpvL2V4RxBEMqAc9EVE

mM+LVT40mKXyi7g9oMDDAbY7Mp9XMhY+B2o+IxqeW08kMzyIODMuJ8h9om8A4MW1MrxWpi2P7

SoV4/fRmgetkb1rpabR2Jd0arB+RHEA2/zhwDeDbNGRoNkh9esN1A566ALJO+YxxCyFc3lpNe5eeTqgnDz

59uCFJwauKkc4AzIwbHBmAYnnGfPBrhMOJRNdxJ 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 53 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

mongodb-replica-set-key: 

AgAbieAbFOoVy4lBiNQDU+rmJAre8p3ThmDMzSmnaBOhnKqwYk3zOxcZfEyPKXHfI1PPv8It/H44gzyk

M4NP8Hi9QQKjdBqYkvE77zfOLPQAjcbwkfxjdpfsUx85n7KcCwFuQLY1Xu/b8G6zxI/+XW/f/sKuiX2qAc

KlzMLk2dAWkeU8TgA+S5jYPPgHyDAEnJaKlRoKq7ADUeQaee8Bt9HvQhhNDOEZyhuyLrOo/fTajYXK

2u0maLARf79ja908oBqpc/H5gQAP/Sd3+Q7U6pS+Eo7k8+t1LnG7G+Hbc62aJMoEZo4pJhMyqy+wFjqmZi

hjVJCEkf6qP0TuLBO5tN2EYs5Jr8pegbrCFuUexqf62YItQ+U//24iEUVNrUM9QaBBupCWt0gdoDQTEK5e

6+dyYvf6zmKZw6sfQKYbLNEwzJdJp26K71IBQwGdjmbZIkpBHV7u7QeLO8SG3VaoHOfFHC3vMRE4U

Ad7afwrHuK26Tsd1dU1m1tK9nnwLqR0AoYuHHK7ZQAt1iLOg5xuiENIp3K2ZVxzmK+I5J3coE3ic5KST

Ri12fSEaV5Rk504GJQ7O+m75UImdYBe+tvmbvsyAzwkMiJwGxWI9MaKwA8ceKQPldq0ilTFTcogQ4dq8

Vw9Zy8JvSmd0NpOZP4xXNQN5K0YpEOBgDN7+U7dm3ar9lO8ErjIhCASezWCHa1ymGInF5tqpKiT30/g

XANjUeTO2fdKs3c/DuEj27Z4M/hVmdhc24pB 

mongodb-root-password: 

AgAeMwbU6j+vlUXEgLRVFtscIjC7xHXz8w16qjJzhUbpe7EcXAq24qCzHo0hJA2b3oZmbu6OeNnQALjP

VfUZ5Kz4CiQf8klCe3RECqYbMo+rAslZPclMgnOzuVIfNVrbr6W0pvQNnnzr3s+DSINki9Qudq18qjSrK3h

vjroibB9TF771I5PleptAzdm10Y+kwRTKDTwTqWSFPPzQqJKFE/JAnL/oC+Li4woaDGJTuvEqsfl2qrpmEF

+76iCRk2OjMGMVuV+ighIcemI5yUcCvL9DnxbcybA8x2vd6r7p+3ZbQat+6l2FLhTmh/78vwNWKuQyWL

D/gPOqo8VI7tBwX8AQhXfKCHLleBE4DnepGH+r6dzKfBZGXKokynWXvfcXr4rBI5scfVHIJpagrYOShv

1UIsFdV1nD8CVlsQEXZ9ZOdcbm4ZduT3X0OJ7+vooccPPEucV1S3HdifPDjA032zHJRAYMBqA+CL2R

Rr+JpnvHVMoPS4f6KT8y3ydadllg7dFSIzyNciSY9uaLDQ28im6fa5aqXoQtKQZmUWSXIa4bd06dHJdygm

+eQUDzxrZmAY48sRi6IvTtTZeU/MKiQDzmTTkBDa1Cimsly2ceMBnFE5FLd/D/aTE2LWTRMrRXCxNk

FiTKf3wE+919HdjgHREAZjtNQd+plQlm6fhIaXtIDUtXL5qOkporXACKnykdZdhNYkkMdkBcqjNLpvTZ4

9nsXiTrX8fWT6v29920jTDHuySJspBZ 

template:  

metadata:  

name: mongodb-secret 

namespace: fiware 

Push the mongodb-sealed-secret.yaml file to your repository 

Click on "NEW APP" - this step will continuously repeat  

 

Fill out the form - in contrast to "sealed-secrets" this will consist of plain manifests(like 

"namespaces") 

the example will use this repository, please replace with your own 

Figure 45: Argo. Creation of new app 

 

Figure 46: Argo. Creation of new app 

 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 54 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

 General:  

-> Application name: fiware-secrets  

-> Project: default  

-> Sync Policy: automatic  

Source:  

-> Repository URL: <YOUR_REPOSITORY>  

-> Path: aws/fiware/secrets Destination:  

-> Cluster URL: -- use the URL of the cluster added via argocd-cli  

# NEEDS to be the same as defined in the secret  

-> Namespace: fiware 

Click create and wait until the sealed-secret is deployed and an unsealed secret is created from 

it: 

 

9. Deploy MongoDB 

Deployment of the applications and databases will now all follow the same pattern - create an application in 

ArgoCD, that references the repository. Check the MongoDB values file to see it referencing the created 

secret - mongo-db.auth.existingSecret. 

Click on "NEW APP" 

 

Fill out the Form 

 General:  

Figure 53: Argo. New app 

 

Figure 54: Argo. New app 

 

Figure 49: Argo. Secret configured 

 

Figure 50: Argo. Secret configured 

 

Figure 51: Argo. Secret configured 

 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 55 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

-> Application name: fiware-mongo-db  

-> Project: default  

-> Sync Policy: automatic  

Source:  

-> Repository URL: https://github.com/FIWARE-Ops/fiware-gitops  

-> Path: aws/fiware/mongodb 

Destination:  

-> Cluster URL: -- use the URL of the cluster added via argocd-cli  

-> Namespace: fiware  

Helm: You can provide specific overrides, everything else will be taken from the values-file inside the 

repository(and thus automatically updated together with the repo). 

Click create and wait : 

 Figure 57: Argo. Deployment of Mongodb 

 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 56 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

10. Deploy Orion-LD 

Click on "NEW APP" 

 

Fill out the Form 

 General:  

-> Application name: fiware-orion-ld  

-> Project: default  

-> Sync Policy: automatic  

Source:  

-> Repository URL: https://github.com/FIWARE-Ops/fiware-gitops  

-> Path: aws/fiware/orion-ld Destination:  

-> Cluster URL: -- use the URL of the cluster added via argocd-cli  

-> Namespace: fiware  

Helm: You can provide specific overrides, everything else will be taken from the values-file inside the 

repository(and thus automatically updated together with the repo). 

Advanced topics 

In order to further customize deployments more tooling can be added to the cluster: 

• Automatic creation of subdomains and ssl-certificates 

Figure 61: Argo. Creation of new app 

 

Figure 62: Argo. Creation of new app 

 

Figure 63: Argo. Creation of new app 

 

Figure 64: Argo. Creation of new app 

https://github.com/FIWARE-Ops/fiware-gitops/blob/master/doc/ROUTES.md


 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 57 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Annex III. Concepts 

Reactive manifesto 

The Reactive Manifesto is a set of principles for building reactive systems. A reactive system is a system that 

is responsive, resilient, elastic, and message-driven. These principles were first outlined in a manifesto that 

was published in 2013, and they have since been adopted by a growing number of software developers and 

organizations. 

The main principles of the Reactive Manifesto are as follows: 

• Responsive: A reactive system should respond to user requests in a timely manner, providing 

feedback and updates to the user as needed. 

• Resilient: A reactive system should be able to withstand failures and continue to function correctly, 

even in the face of external factors such as network outages or hardware failures. 

• Elastic: A reactive system should be able to scale up or down as needed to meet changing demands, 

without compromising performance or reliability. 

• Message-driven: A reactive system should use asynchronous message-passing to communicate 

between components, allowing them to interact in a loosely-coupled and scalable manner. 

Overall, the Reactive Manifesto provides a set of guiding principles for building systems that are responsive, 

resilient, elastic, and message-driven. These principles can help developers to create systems that are better 

able to handle the challenges of today's complex and distributed environments. 

Blue-Green deployment 

Blue-green deployment is a technique for deploying software updates. It involves maintaining two identical 

production environments, called blue and green, and switching traffic between them in order to deploy new 

versions of the software. This allows you to deploy updates without any downtime, and it makes it easier to 

roll back to the previous version of the software if there are any issues. 

The basic steps for a blue-green deployment are as follows: 

• The blue environment is used for production, and the green environment is idle. 

• A new version of the software is deployed to the green environment. 

• The green environment is tested to make sure that the new version of the software is working as 

expected. 

• Once the green environment has been tested and verified, traffic is switched from the blue 

environment to the green environment, so that users are now accessing the new version of the 

software. 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 58 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

• The blue environment is then idle, and can be used for the next deployment. 

Overall, blue-green deployment is a useful technique for deploying software updates in a way that minimizes 

downtime and allows for easy rollbacks. It can help to improve the reliability and availability of your 

software. 

Canary deployment 

Canary deployment is a technique for rolling out new software versions to a subset of users, before deploying 

the update to the entire user base. This allows you to test the new version of the software in a production 

environment, with real users, before making it available to everyone. This can help to ensure that the update is 

working as expected, and it can give you an opportunity to fix any issues before they affect a large number of 

users. 

The basic steps for a canary deployment are as follows: 

• A new version of the software is created and deployed to a small group of users, called the "canary" 

group. 

• The canary group uses the new version of the software, and their usage is monitored to see if there are 

any issues or problems. 

• If the canary group experiences any issues, the new version of the software can be rolled back, and the 

problem can be fixed. 

• If the canary group does not experience any issues, the new version of the software can be deployed to 

a larger group of users, such as a "beta" group. 

• If the beta group also does not experience any issues, the new version of the software can be deployed 

to the entire user base. 

Overall, canary deployment is a useful technique for rolling out new software versions in a controlled and safe 

manner. It allows you to test new versions of the software with real users, and it provides an opportunity to fix 

any issues before they affect a large number of users. 

 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 59 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Annex IV. Security 

Here there are some generic recommendations regarding security that can be adopted by the use cases in their 

architectures. Further information can be found in the Security Access and API Management repository [36]. 

General security considerations 

The security of the overall system is a multilayer building, and the precise requirements should be described 

for each implementation of the reference architecture. 

anyhow some elements to build the security of the system has to be in place. 

• A proper identification and permission system has to be implemented across the system. This 

mechanism has to be able to restrict access to  non-authorized people to the restricted operations.  

• For each component a precise description of the function has to be available.  

• Additionally, a feedback mechanism has to be in place, and it has to be proved that it is regularly 

checked, and the raised issues addressed and eventually solved.  

• The process for contribution of new features or fixes has to be clearly explained and the mechanism 

for contribution also available and clear. Some standards for contribution to be accepted should be 

also documented (in order to prevent low quality contributions that can drag the overall security of a 

component). Complementary, a discussion mechanism for new features or approaches to fixes has to 

be available.  

• It is required to have updated documentation of the software 

• Last but not least the overall project has to be maintained. (i.e. for basic software updates) 

• A unique version number has to identify different version and a proper naming method for versioning 

should be clearly described and adopted. 

• the different software blocks must have an automatic testing mechanism and explanations on how to 

run it to check proper running.  

• Cryptographic protocols and algorithms have to be implemented whenever necessary to ensure 

security. The default security mechanisms within the software produced by the project MUST NOT 

depend on broken cryptographic algorithms 

• Whenever applicable every element of the project MUST use a delivery mechanism that counters 

man-in-the-middle attacks.  

 

 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 60 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

As popularized by the Kubernetes project, the security of a cloud native platform relies in the security of the 

4C’s: 

• Security of the code 

• Security of the container 

• Security of the cluster 

• Security of the cloud 

The security of the code and of the container are already discussed in detail in the previous sections. The 

security of the cluster is developed in the following paragraphs. 

The security of the cloud will have to be evaluated on a case-by-case basis, as the pilot sites emitted the will to 

host the FIWARE platform on their own premises or within the infrastructure of their usual cloud provider. 

Security recommendations will be provided and checked all along the deployment to ensure all the platforms 

are deployed according to the best practices in cloud security, with support from the technical team of the 

project. 

Security of communications 

The security of communications applies to different levels: 

• First of all, all HTTP communications have to be done through HTTPS (the use of the Certbot 

certificate provider, which is now well established and largely deployed, will be considered first) 

• The communications between the FIWARE platform and the legacy systems will be secured with 

respect to the security protocols set by each pilot. This is dealt with in the next section. 

• The internal communications between the components of the platform should also preferably be 

secured. This is typically done by using the TLS cryptographic protocol when exchanging data 

between components, to avoid traffic sniffing 

• The communications from and to the sensors, via the IoT Agents. The security of these 

communications depends on the underlying protocol, so it will be defined and applied on a case-by-

case basis. 

Management of secrets 

Every microservice has to know some passwords, secrets or tokens to communicate with other systems (be it a 

database, an external service, an authentication provider, and so on). They of course must not be stored in 

clear text, not even into a private VCS. A first considered step is to use environment variables defined only on 

target hosts. A more robust approach is to encrypt secrets and use an external service to manage them (for 

instance HashiCorp Vault or Spring Vault). 



 
 

 

Document name: D4.2 GreenMov Reference Architecture and guidelines v2 Page: 61 of 61 

Reference: D4.2 Dissemination:  PU Version: 1.0 Status: Final 

 

Slow down attackers 

Eventually, an attacker will try to brute force the authentication to the API in order to gain access to the 

system and expose sensitive or confidential data. One measure to mitigate that risk is to slow down such 

attacks. This can be done by implementing rate-limiting, whether in the application code or at an API gateway 

level. It is also more effective if a SIEM tool is deployed inside the platform, for a quicker reaction to such 

events. 

Intrusion detection system 

The production also has to be protected from intrusions, that means that an intrusion detection system must be 

set up (existing tools like Falco, Suricata or else Snort will be considered). This eventually can be completed 

by a SIEM tool. 

Data integrity 

Finally, the data at rest in databases has to be encrypted, as it can potentially be leaked in case an attacker 

gains access to the platform. As this is an expensive process, only sensitive or confidential data will be 

encrypted. The techniques and algorithms depend on each database vendor thus, it will be checked on a per-

database basis, and adapted security measures will be applied on each. 

 

 


	Document Information
	Table of Contents
	List of Figures
	List of Acronyms
	Executive Summary
	1 Introduction
	1.1 Purpose of the document
	1.2 Relation to other project work
	1.3 Structure of the document
	1.4 Glossary adopted in this document

	2 Basic software components
	2.1 Introduction to FIWARE architecture, standards and components
	2.2 Reference architecture levels
	2.3 Global diagram
	2.4 Core components of the reference architecture
	2.4.1 Context broker
	2.4.2 NGSI-LDES
	2.4.3 IoT Agents

	2.5 Persistence components of the reference architecture
	2.5.1 Cygnus-LD
	2.5.2 Other persistence components

	2.6 Security components
	2.6.1 Keycloak
	2.6.2 Keyrock
	2.6.3 Wilma
	2.6.4 Authzforce

	2.7 Other components
	2.7.1 Connection with open data portals


	3 Deployment of the platform
	3.1 Installation of the core context broker
	3.1.1 Installation of Orion-LD on MongoDB

	3.2 Persistence Components
	3.2.1 Installation of Cygnus

	3.3 Installation of security components
	3.3.1 Installation of  Keycloak
	3.3.2 Installation of Keyrock
	3.3.3 Installation of Wilma
	3.3.4 Installation of Authzforce

	3.4 Configuration of federated scenarios
	3.4.1 Types of deployments simple and advanced
	3.4.2 Advanced deployments
	3.4.3 Federated deployments
	3.4.4 Multitenancy
	3.4.5 Distributed operation modes
	Additive Registrations
	Inclusive
	Auxiliary
	Proxied Registrations
	Exclusive
	Redirect



	4 Operation of the platform
	4.1 Operational aspects
	4.2 Secure code, from design to delivery
	4.3 Secure by design
	4.4 Dependencies scanning
	4.5 DevSecOps

	5 Data Architecture
	5.1 Data Storage architecture and technical format
	5.2 Basic data classes / entities

	6 Conclusions
	7 References
	Annex I. Requirements for a generic enabler
	Licensing and open SSF Best practices signature
	General requirements
	Documentation requirements
	Development requirements

	Annex II. An example of configuration
	How to setup
	1. Prepare AWS account
	2. Install OpenShift cluster
	3. Install certificates
	Clone the acme.sh github-repo
	Setup AWS credentials
	Obtain certificates
	Create the secrets
	Patch ingress-controller and api-server
	Update kubeconfig
	Verify success

	4. Install ArgoCD
	Create namespace
	Install ArgoCD operator
	Deploy an instance of ArgoCD

	5. Prepare ArgoCD for namespaced deployments
	6. Deploy namespaces
	Click create and wait until its running:

	7. Deploy bitnami/sealed-secrets
	Click create and wait until its running:

	8. Create secrets
	Install kubeseal
	Seal the secret
	Push the mongodb-sealed-secret.yaml file to your repository
	Fill out the form - in contrast to "sealed-secrets" this will consist of plain manifests(like "namespaces")
	Click create and wait until the sealed-secret is deployed and an unsealed secret is created from it:

	9. Deploy MongoDB
	Click on "NEW APP"
	Fill out the Form
	Click create and wait :

	10. Deploy Orion-LD
	Click on "NEW APP"
	Fill out the Form

	Advanced topics

	Annex III. Concepts
	Reactive manifesto
	Blue-Green deployment
	Canary deployment

	Annex IV. Security
	General security considerations
	Security of communications
	Management of secrets
	Slow down attackers
	Intrusion detection system
	Data integrity


